首先,这里是我打算做的快速图形描述。我将使用Python,但您可以在答案中使用伪代码。
我有2个 2D 段的集合,存储如下:[ [start_point, end_point], [...] ]
。
首先,我必须检测与 black 集合发生碰撞的 blue 集合的每个部分。为此,我使用LeMothe的线/线交叉算法。
然后是我的第一个问题:在 C 中有一段 AB 与我的行相交,我不知道如果我必须修剪如何确定使用代码我的细分为 AC 或 CB ,即:我不知道我需要保留哪部分片段以及需要删除的部分。
然后对于第二步,我真的不知道如何实现这一目标。
非常感谢任何帮助,所以提前谢谢!
答案 0 :(得分:2)
第二步是微不足道的,一旦你想要保留什么以及什么不是,你只需要跟踪你剪切的片段并查看它们最初连接的位置(例如假设片段是有序的并形成连接线)。 另一方面,假设您的黑线实际上是一条线而不是多边形,在第一步中,选择“外部”和“内部”的内容似乎是完全随意的;是可以将其关闭成多边形吗?否则,您可能需要人工创建两个多边形(线的每一边一个),然后在这些多边形内部进行裁剪。你可以使用像Cyrus和Beck线裁剪算法这样的东西(参见本教程的概述:https://www.tutorialspoint.com/computer_graphics/viewing_and_clipping.htm)
随意使用以下任何代码作为起点(您有一个交叉函数和一些有用的类)。实施萨瑟兰和霍奇曼。
class Point2(object):
"""Structure for a 2D point"""
def __init__(self, x=0, y=0):
self.x = x
self.y = y
def __copy__(self):
return self.__class__(self.x, self.y)
copy = __copy__
def __repr__(self):
return 'Point2(%d, %d)' % (self.x, self.y)
def __getitem__(self, key):
return (self.x, self.y)[key]
def __setitem__(self, key, value):
l = [self.x, self.y]
l[key] = value
self.x, self.y = l
def __eq__(self, other):
if isinstance(other, Point2):
return self.x == other.x and \
self.y == other.y
else:
assert hasattr(other, '__len__') and len(other) == 2
return self.x == other[0] and \
self.y == other[1]
def __ne__(self, other):
return not self.__eq__(other)
def __nonzero__(self):
return self.x != 0 or self.y != 0
def __len__(self):
return 2
class Line2(object):
"""Structure for a 2D line"""
def __init__(self,pt1,pt2):
self.pt1,self.pt2=pt1,pt2
def __repr__(self):
return 'Line2(%s, %s)' % (self.pt1, self.pt2)
class Polygon2(object):
def __init__(self,points):
self.points = points
def __repr__(self):
return '[\n %s\n]' % '\n '.join([str(i) for i in self.points])
def lines(self):
lines = []
e = self.points[-1].copy()
for p in self.points:
lines.append(Line2(e,p))
e = p.copy()
return lines
#return [Line2(a,b) for a,b in zip(self.points,self.points[1:]+[self.points[0]])]
def __copy__(self):
return self.__class__(list(self.points))
copy = __copy__
class Renderer(object):
"""Rendering algorithm implementations"""
def __init__(self,world,img,color=1):
self.world,self.img,self.color=world,img,color
def transform(self,s,r,m,n):
"""Homogeneous transformation operations"""
for i in self.world.points():
j = Matrix3.new_translate(m, n)*Matrix3.new_rotate(r)*Matrix3.new_scale(s)*i
i.x,i.y = j.x,j.y
def clip(self,a,b,c,d):
"""Clipping for the world window defined by a,b,c,d"""
self.clip_lines(a, b, c, d)
self.clip_polygons(a, b, c, d)
def shift(self,a,b,c,d):
"""Shift the world window"""
for i in self.world.points():
i.x -= a
i.y -= b
def clip_lines(self,a,b,c,d):
"""Clipping for lines (i.e. open polygons)"""
clipped = []
for i in self.world.lines:
clipped += [self.clip_lines_cohen_sutherland(i.pt1, i.pt2, a, b, c, d)]
self.world.lines = [i for i in clipped if i]
def clip_polygons(self,a,b,c,d):
"""Clipping for polygons"""
polygons = []
for polygon in self.world.polygons:
new_polygon = self.clip_polygon_sutherland_hodgman(polygon, a, b, c, d)
polygons.append(new_polygon)
self.world.polygons = polygons
def clip_polygon_sutherland_hodgman(self,polygon,xmin,ymin,xmax,ymax):
edges = [Line2(Point2(xmax,ymax),Point2(xmin,ymax)), #top
Line2(Point2(xmin,ymax),Point2(xmin,ymin)), #left
Line2(Point2(xmin,ymin),Point2(xmax,ymin)), #bottom
Line2(Point2(xmax,ymin),Point2(xmax,ymax)), #right
]
def is_inside(pt,line):
# uses the determinant of the vectors (AB,AQ), Q(X,Y) is the query
# left is inside
det = (line.pt2.x-line.pt1.x)*(pt.y-line.pt1.y) - (line.pt2.y-line.pt1.y)*(pt.x-line.pt1.x)
return det>=0
def intersect(pt0,pt1,line):
x1,x2,x3,x4 = pt0.x,pt1.x,line.pt1.x,line.pt2.x
y1,y2,y3,y4 = pt0.y,pt1.y,line.pt1.y,line.pt2.y
x = ((x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4)) / ((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4))
y = ((x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4)) / ((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4))
return Point2(int(x),int(y))
polygon_new = polygon.copy()
for edge in edges:
polygon_copy = polygon_new.copy()
polygon_new = Polygon2([])
s = polygon_copy.points[-1]
for p in polygon_copy.points:
if is_inside(s,edge) and is_inside(p,edge):
polygon_new.points.append(p)
elif is_inside(s,edge) and not is_inside(p,edge):
polygon_new.points.append(intersect(s,p,edge))
elif not is_inside(s,edge) and not is_inside(p,edge):
pass
else:
polygon_new.points.append(intersect(s,p,edge))
polygon_new.points.append(p)
s = p
return polygon_new
def clip_lines_cohen_sutherland(self,pt0,pt1,xmin,ymin,xmax,ymax):
"""Cohen-Sutherland clipping algorithm for line pt0 to pt1 and clip rectangle with diagonal from (xmin,ymin) to (xmax,ymax)."""
TOP = 1
BOTTOM = 2
RIGHT = 4
LEFT = 8
def ComputeOutCode(pt):
code = 0
if pt.y > ymax: code += TOP
elif pt.y < ymin: code += BOTTOM
if pt.x > xmax: code += RIGHT
elif pt.x < xmin: code += LEFT
return code
accept = False
outcode0, outcode1 = ComputeOutCode(pt0), ComputeOutCode(pt1)
while True:
if outcode0==outcode1==0:
accept=True
break
elif outcode0&outcode1:
accept=False
break
else:
#Failed both tests, so calculate the line segment to clip from an outside point to an intersection with clip edge.
outcodeOut = outcode0 if not outcode0 == 0 else outcode1
if TOP & outcodeOut:
x = pt0.x + (pt1.x - pt0.x) * (ymax - pt0.y) / (pt1.y - pt0.y)
y = ymax
elif BOTTOM & outcodeOut:
x = pt0.x + (pt1.x - pt0.x) * (ymin - pt0.y) / (pt1.y - pt0.y)
y = ymin
elif RIGHT & outcodeOut:
y = pt0.y + (pt1.y - pt0.y) * (xmax - pt0.x) / (pt1.x - pt0.x);
x = xmax;
elif LEFT & outcodeOut:
y = pt0.y + (pt1.y - pt0.y) * (xmin - pt0.x) / (pt1.x - pt0.x);
x = xmin;
if outcodeOut == outcode0:
pt0 = Point2(x,y)
outcode0 = ComputeOutCode(pt0)
else:
pt1 = Point2(x,y)
outcode1 = ComputeOutCode(pt1);
if accept:
return Line2(pt0,pt1)
else:
return False
答案 1 :(得分:1)
我认为您需要做的是找到从蓝色物体中心到相关线段的直线。如果从中心到AB段或BC段的新线在到达蓝线段的路上遇到黑线,那么该段在外面并被修剪。您可能希望在A和B之间或B和C之间的某个点进行检查,这样就不会碰到交叉点。
至于python方面,我建议定义一个具有一些中点属性的线对象类和一个由具有中心属性的线组成的形状类(实际上可以想到它,然后一条线将被视为一个如此形状,你可以使行成为形状类的子类并保留代码),这样你就可以创建比较两行作为每个对象的一部分的方法。
line_a = Line((4,2),(6,9))
line_b = Line((8,1),(2,10))
line_a.intersects(line.b) #Could return Boolean, or the point of intersection
在我看来,感觉这是一个非常舒适的解决方法,因为它可以让你跟踪所做的一切。