我已经对它进行了大量搜索但是这个错误主要出现在图像很大的时候。我的图片不大,我仍然收到此错误。我试图通过openCV识别手写数字。我已经检查过我的图像是否正在加载,所以这不是问题。这是我的代码。
im = cv2.imread(filename,1)
# Convert to grayscale and apply Gaussian filtering
# Convert image from one color space to another
im_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
im_gray = cv2.GaussianBlur(im_gray, (5, 5), 0)
# Threshold to binary the image
ret, im_th = cv2.threshold(im_gray, 90, 255, cv2.THRESH_BINARY_INV)
# Find contours in the image
_, ctrs, hier = cv2.findContours(im_th.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Get rectangles contains each contour
rects = [cv2.boundingRect(ctr) for ctr in ctrs]
# For each rectangular region, calculate HOG features and predict
# the digit using Linear SVM.
for rect in rects:
# Draw the rectangles
cv2.rectangle(im, (rect[0], rect[1]), (rect[0] + rect[2], rect[1] + rect[3]), (0, 255, 0), 2)
# Make the rectangular region around the digit
leng = int(rect[3] * 1.6)
pt1 = int(rect[1] + rect[3] // 2 - leng // 2)
pt2 = int(rect[0] + rect[2] // 2 - leng // 2)
roi = im_th[pt1:pt1+leng, pt2:pt2+leng]
# Resize the image
roi = cv2.resize(roi, (28, 28), interpolation=cv2.INTER_AREA)
roi = cv2.dilate(roi, (3, 3))
# Calculate the HOG features
roi_hog_fd = hog(roi, orientations=9, pixels_per_cell=(14, 14), cells_per_block=(1, 1), visualise=False)
nbr = clf.predict(np.array([roi_hog_fd], 'float64'))
我怀疑这两行是否出现错误。
ret, im_th = cv2.threshold(im_gray, 90, 255, cv2.THRESH_BINARY_INV)
和
roi = cv2.resize(roi, (28, 28), interpolation=cv2.INTER_AREA)
它也不接受油漆图像。任何帮助,将不胜感激。