为什么我可以在这种情况下按月进行选择,但不是按日期选择?
dates = pd.date_range( start = "01/01/1931" , end = "01/02/1941" )
new_df_4 = new_df_3.reindex(dates)
new_df_4["1931-10"][![enter image description here][1]][1]
但这不起作用:
new_df_4["1931-10-02"]
KeyError Traceback(最近一次调用最后一次) in() ----> 1 new_df_4 [“1931-10-02”]
/Users/romain/anaconda/lib/python2.7/site-packages/pandas/core/frame.pyc in __getitem__(self, key)
1990 return self._getitem_multilevel(key)
1991 else:
-> 1992 return self._getitem_column(key)
1993
1994 def _getitem_column(self, key):
/Users/romain/anaconda/lib/python2.7/site-packages/pandas/core/frame.pyc in _getitem_column(self, key)
2002 result = self._constructor(self._data.get(key))
2003 if result.columns.is_unique:
-> 2004 result = result[key]
2005
2006 return result
/Users/romain/anaconda/lib/python2.7/site-packages/pandas/core/frame.pyc in __getitem__(self, key)
1990 return self._getitem_multilevel(key)
1991 else:
-> 1992 return self._getitem_column(key)
1993
1994 def _getitem_column(self, key):
/Users/romain/anaconda/lib/python2.7/site-packages/pandas/core/frame.pyc in _getitem_column(self, key)
1997 # get column
1998 if self.columns.is_unique:
-> 1999 return self._get_item_cache(key)
2000
2001 # duplicate columns & possible reduce dimensionality
/Users/romain/anaconda/lib/python2.7/site-packages/pandas/core/generic.pyc in _get_item_cache(self, item)
1343 res = cache.get(item)
1344 if res is None:
-> 1345 values = self._data.get(item)
1346 res = self._box_item_values(item, values)
1347 cache[item] = res
/Users/romain/anaconda/lib/python2.7/site-packages/pandas/core/internals.pyc in get(self, item, fastpath)
3223
3224 if not isnull(item):
-> 3225 loc = self.items.get_loc(item)
3226 else:
3227 indexer = np.arange(len(self.items))[isnull(self.items)]
/Users/romain/anaconda/lib/python2.7/site-packages/pandas/indexes/base.pyc in get_loc(self, key, method, tolerance)
1876 return self._engine.get_loc(key)
1877 except KeyError:
-> 1878 return self._engine.get_loc(self._maybe_cast_indexer(key))
1879
1880 indexer = self.get_indexer([key], method=method, tolerance=tolerance)
pandas/index.pyx in pandas.index.IndexEngine.get_loc (pandas/index.c:4027)()
pandas/index.pyx in pandas.index.IndexEngine.get_loc (pandas/index.c:3891)()
pandas/hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:12408)()
pandas/hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:12359)()
KeyError: '1931-10-02'
答案 0 :(得分:4)
按月选择使用partial string indexing:
print (new_df_4["1931-10"])
如果分辨率相同(来自same docs),这不会起作用:
警告强> 但是,如果将字符串视为完全匹配,则 DataFrame的[]中的选择将按列进行,而不是按行进行,请参阅 索引基础知识。例如,dft_minute [' 2011-12-31 23:59']将会提升 KeyError为' 2012-12-31 23:59'具有与索引相同的分辨率 没有这样名称的列:总是有明确的 选择,行是被视为切片还是单个 选择,使用.loc。
In [95]: dft_minute.loc['2011-12-31 23:59'] Out[95]: a 1 b 4 Name: 2011-12-31 23:59:00, dtype: int64
如果需要按日期选择,您可以使用loc
:
new_df_4.loc["1931-10-02"]
样品:
np.random.seed(10)
dates = pd.date_range( start = "01/01/1931" , end = "01/02/1941" )
new_df_4 = pd.DataFrame({'a':np.random.randint(10, size=len(dates))}, index=dates)
print (new_df_4.head())
a
1931-01-01 9
1931-01-02 4
1931-01-03 0
1931-01-04 1
1931-01-05 9
print (new_df_4["1931-10"])
a
1931-10-01 9
1931-10-02 6
1931-10-03 9
1931-10-04 7
1931-10-05 8
1931-10-06 0
1931-10-07 9
1931-10-08 6
1931-10-09 0
1931-10-10 1
1931-10-11 0
...
print (new_df_4.loc["1931-10-02"])
a 6
Name: 1931-10-02 00:00:00, dtype: int32