我想使用tf.Tensor作为TensorFlow图中另一个操作的类型(python)列表的参数。 换句话说,我想将Tensor用作另一个操作的动态列表参数。这可能吗?
可执行示例:
import tensorflow as tf
import numpy as np
graph = tf.Graph()
var1 = np.random.randn(2, 3)
var2 = np.random.randn(2, 3, 4)
with graph.as_default():
def getRange(myTensor):
myRank = tf.rank(myTensor)
return tf.range(tf.constant(1), tf.squeeze(myRank))
def getMoments(myTensor):
myMoments = tf.nn.moments(myTensor, axes=getRange(myTensor))
return myMoments
var1tf = tf.Variable(var1)
var2tf = tf.Variable(var2)
var1moments = getMoments(var1tf)
var2moments = getMoments(var2tf)
rangeVar1 = getRange(var1tf)
rangeVar2 = getRange(var2tf)
init = tf.global_variables_initializer()
with tf.Session(graph=graph) as sess:
sess.run([init])
print(sess.run([rangeVar1])) # outputs [1], ok
print(sess.run([rangeVar2])) # outputs [1, 2], ok
print(sess.run([var1moments]))
print(sess.run([var2moments]))
这引发:
raise TypeError("'Tensor' object is not iterable.")
答案 0 :(得分:0)
我找到了一个使用get_shape()的解决方案:
def getMoments(myTensor):
myRank = len(myTensor.get_shape().as_list())
print('rank via shape:', myRank)
myMoments = tf.nn.moments(myTensor, axes=list(range(1, myRank)))
return myMoments