如何解释火花逻辑回归预测中的概率列?

时间:2017-05-18 23:37:59

标签: apache-spark machine-learning apache-spark-sql logistic-regression apache-spark-ml

我通过spark.ml.classification.LogisticRegressionModel.predict得到了预测。许多行的prediction列为1.0probability列为.04model.getThreshold0.5,因此我假设模型将0.5概率阈值上的所有内容归类为1.0

我应该如何解释1.0 predictionprobability为0.04的结果?

1 个答案:

答案 0 :(得分:4)

执行LogisticRegression的概率列应包含一个与类数相同的列表,其中每个索引给出该类的相应概率。我举了两个类来举例说明:

case class Person(label: Double, age: Double, height: Double, weight: Double)
val df = List(Person(0.0, 15, 175, 67), 
      Person(0.0, 30, 190, 100), 
      Person(1.0, 40, 155, 57), 
      Person(1.0, 50, 160, 56), 
      Person(0.0, 15, 170, 56), 
      Person(1.0, 80, 180, 88)).toDF()

val assembler = new VectorAssembler().setInputCols(Array("age", "height", "weight"))
  .setOutputCol("features")
  .select("label", "features")
val df2 = assembler.transform(df)
df2.show

+-----+------------------+
|label|          features|
+-----+------------------+
|  0.0| [15.0,175.0,67.0]|
|  0.0|[30.0,190.0,100.0]|
|  1.0| [40.0,155.0,57.0]|
|  1.0| [50.0,160.0,56.0]|
|  0.0| [15.0,170.0,56.0]|
|  1.0| [80.0,180.0,88.0]|
+-----+------------------+

val lr = new LogisticRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)
val Array(testing, training) = df2.randomSplit(Array(0.7, 0.3))

val model = lr.fit(training)
val predictions = model.transform(testing)
predictions.select("probability", "prediction").show(false)


+----------------------------------------+----------+
|probability                             |prediction|
+----------------------------------------+----------+
|[0.7487950501224138,0.2512049498775863] |0.0       |
|[0.6458452667523259,0.35415473324767416]|0.0       |
|[0.3888393314864866,0.6111606685135134] |1.0       |
+----------------------------------------+----------+

以下是算法的概率以及最终预测。最终概率最高的类是预测的类。