我试图在tensorboard中显示我的嵌入。当我打开tensorboard的embeddings选项卡时,我得到:"计算PCA ......"和tensorboard无限地挂起。
在此之前,它确实加载了200x128的张量形状。它也找到了元数据文件。
我在TF版本0.12和1.1上尝试了相同的结果。
features = np.zeros(shape=(num_batches*batch_size, 128), dtype=float)
embedding_var = tf.Variable(features, name='feature_embedding')
config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = 'feature_embedding'
metadata_path = os.path.join(self.log_dir, 'metadata.tsv')
embedding.metadata_path = metadata_path
with tf.Session(config=self.config) as sess:
tf.global_variables_initializer().run()
restorer = tf.train.Saver()
restorer.restore(sess, self.pretrained_model_path)
with open(metadata_path, 'w') as f:
for step in range(num_batches):
batch_images, batch_labels = data.next()
for label in batch_labels:
f.write('%s\n' % label)
feed_dict = {model.images: batch_images}
features[step*batch_size : (step+1)*batch_size, :] = \
sess.run(model.features, feed_dict)
sess.run(embedding_var.initializer)
projector.visualize_embeddings(tf.summary.FileWriter(self.log_dir), config)
答案 0 :(得分:0)
我不知道上面的代码有什么问题,但是我用不同的方式(下面)重写了它,并且它有效。不同之处在于embedding_var
初始化的时间和方式。
我也提出了a gist to copy-paste code from。
# a numpy array for embeddings and a list for labels
features = np.zeros(shape=(num_batches*self.batch_size, 128), dtype=float)
labels = []
# compute embeddings batch by batch
with tf.Session(config=self.config) as sess:
tf.global_variables_initializer().run()
restorer = tf.train.Saver()
restorer.restore(sess, self.pretrained_model)
for step in range(num_batches):
batch_images, batch_labels = data.next()
labels += batch_labels
feed_dict = {model.images: batch_images}
features[step*self.batch_size : (step+1)*self.batch_size, :] = \
sess.run(model.features, feed_dict)
# write labels
metadata_path = os.path.join(self.log_dir, 'metadata.tsv')
with open(metadata_path, 'w') as f:
for label in labels:
f.write('%s\n' % label)
# write embeddings
with tf.Session(config=self.config) as sess:
config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = 'feature_embedding'
embedding.metadata_path = metadata_path
embedding_var = tf.Variable(features, name='feature_embedding')
sess.run(embedding_var.initializer)
projector.visualize_embeddings(tf.summary.FileWriter(self.log_dir), config)
saver = tf.train.Saver({"feature_embedding": embedding_var})
saver.save(sess, os.path.join(self.log_dir, 'model_features'))
答案 1 :(得分:0)
这是一个错误。它在tensorflow 1.13中已修复