我的这个段落元素包含文本和2个超链接元素。
p
| Favicon made by
|
a(href="http://www.niceandserious.com/", target="_blank") www.niceandserious.com
|
| from
|
a(href="http://www.flaticon.com/", target="_blank") www.flaticon.com
| .
这将呈现以下输出。
<p>Favicon made by <a href="http://www.niceandserious.com/" target="_blank">www.niceandserious.com</a> from <a href="http://www.flaticon.com/" target="_blank">www.flaticon.com</a>.</p>
是否可以在没有|的单词/元素之前或之前获得空格?
答案 0 :(得分:1)
这对我有用。只需在需要空格的地方添加scope_name = "A3C_net"
with tf.device(self._device),tf.variable_scope(scope_name) as scope:
self.W_conv1, self.b_conv1 = self._conv_variable([8, 8, 4, 16])
self.W_conv2, self.b_conv2 = self._conv_variable([4, 4, 16, 32])
self.W_fc1, self.b_fc1 = self._fc_variable([2592, 256])
# lstm
self.lstm = tf.contrib.rnn.BasicLSTMCell(256, state_is_tuple=True, reuse=True)#
# weight for policy output layer
self.W_fc2, self.b_fc2 = self._fc_variable([256, action_size])
# weight for value output layer
self.W_fc3, self.b_fc3 = self._fc_variable([256, 1])
self.s = tf.placeholder("float", [None, 84, 84, 4])
h_conv1 = tf.nn.relu(self._conv2d(self.s, self.W_conv1, 4) + self.b_conv1)
h_conv2 = tf.nn.relu(self._conv2d(h_conv1, self.W_conv2, 2) + self.b_conv2)
h_conv2_flat = tf.reshape(h_conv2, [-1, 2592])
h_fc1 = tf.nn.relu(tf.matmul(h_conv2_flat, self.W_fc1) + self.b_fc1)
h_fc1_reshaped = tf.reshape(h_fc1, [1,-1,256]) # batches steps inputs
self.step_size = tf.placeholder(tf.float32, [1])
self.initial_lstm_state0 = tf.placeholder(tf.float32, [1, 256])
self.initial_lstm_state1 = tf.placeholder(tf.float32, [1, 256])
self.initial_lstm_state = tf.contrib.rnn.LSTMStateTuple(
self.initial_lstm_state0,
self.initial_lstm_state1)
lstm_outputs, self.lstm_state = tf.nn.dynamic_rnn(self.lstm,
h_fc1_reshaped,initial_state = self.initial_lstm_state,dtype= tf.float32,
sequence_length = self.step_size,
time_major = False,
scope = scope)
lstm_outputs = tf.reshape(lstm_outputs, [-1,256])
# policy (output)
self.pi = tf.nn.softmax(tf.matmul(lstm_outputs, self.W_fc2) + self.b_fc2)
# value (output)
v_ = tf.matmul(lstm_outputs, self.W_fc3) + self.b_fc3
self.v = tf.reshape( v_, [-1] )
scope.reuse_variables()
self.W_lstm = tf.get_variabl("basic_lstm_cell/weights")
self.b_lstm = tf.get_variable("basic_lstm_cell/biases")
self.reset_state()
即可。
#{' '}