我在AWS datapipeline中设置了一个emr步骤。 step命令如下所示:
/usr/lib/hadoop-mapreduce/hadoop-streaming.jar,-input,s3n://input-bucket/input-file,-output,s3://output/output-dir,-mapper,/bin/cat,-reducer,reducer.py,-file,/scripts/reducer.py,-file,/params/parameters.bin
我收到以下错误
Error: java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 1
at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:322)
at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:535)
at org.apache.hadoop.streaming.PipeReducer.close(PipeReducer.java:134)
at org.apache.hadoop.io.IOUtils.cleanup(IOUtils.java:244)
at org.apache.hadoop.mapred.ReduceTask.runOldReducer(ReduceTask.java:467)
at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:393)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:164)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1698)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:158)
Container killed by the ApplicationMaster.
Container killed on request. Exit code is 143
Container exited with a non-zero exit code 143
Error: java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 1
at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:322)
at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:535)
at org.apache.hadoop.streaming.PipeReducer.close(PipeReducer.java:134)
at org.apache.hadoop.io.IOUtils.cleanup(IOUtils.java:244)
at org.apache.hadoop.mapred.ReduceTask.runOldReducer(ReduceTask.java:467)
at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:393)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:164)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1698)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:158)
Container killed by the ApplicationMaster.
Container killed on request. Exit code is 143
Container exited with a non-zero exit code 143
我尝试在桌面上单独运行reducer步骤
(在单个节点hadoop设置上)及其工作。我已将#!/usr/bin/env python
包含在reducer脚本中。 我怀疑我没有正确编写EMR步骤。
EMR version: 5.5.0
修改 经过进一步调查,我发现了emr中reducer代码失败的确切代码行。 我正在使用reducer中的mxnet库进行机器学习预测。当我加载模型参数时,reducer失败。 API文档的引用是here
module.load_params('parameters.bin')
我已经检查了EMR节点[使用os.listdir(os.getcwd())
]的当前工作目录,它包含parameters.bin
文件(我甚至已经成功打印了文件内容)。
我想再次指出,流式传输作业在我的单节点本地设置上运行良好。
EDIT2:我将reducer任务的数量设置为2.我将reducer代码包含在try-except块中,我在其中一个任务中看到以下错误(另一个运行正常)
[10:27:25] src/ndarray/ndarray.cc:299: Check failed: from.shape() == to->shape() operands shape mismatchfrom.shape = (119,) to.shape=(111,)
Stack trace returned 10 entries:
[bt] (0) /usr/local/lib/python2.7/site-packages/mxnet/libmxnet.so(+0xc72fc) [0x7f81443842fc]
[bt] (1) /usr/local/lib/python2.7/site-packages/mxnet/libmxnet.so(+0xc166f4) [0x7f8144ed36f4]
[bt] (2) /usr/local/lib/python2.7/site-packages/mxnet/libmxnet.so(+0xc74c24) [0x7f8144f31c24]
[bt] (3) /usr/local/lib/python2.7/site-packages/mxnet/libmxnet.so(MXImperativeInvoke+0x2cd) [0x7f8144db935d]
[bt] (4) /usr/lib64/libffi.so.6(ffi_call_unix64+0x4c) [0x7f8150b8acec]
[bt] (5) /usr/lib64/libffi.so.6(ffi_call+0x1f5) [0x7f8150b8a615]
[bt] (6) /usr/lib64/python2.7/lib-dynload/_ctypes.so(_ctypes_callproc+0x30b) [0x7f8150d9d97b]
[bt] (7) /usr/lib64/python2.7/lib-dynload/_ctypes.so(+0xa915) [0x7f8150d97915]
[bt] (8) /usr/lib64/libpython2.7.so.1.0(PyObject_Call+0x43) [0x7f815a69e183]
[bt] (9) /usr/lib64/libpython2.7.so.1.0(PyEval_EvalFrameEx+0x337d) [0x7f815a73107d]
答案 0 :(得分:1)
我想出了这个问题。实际上,mxnet所期望的形状取决于数据集(它实际上取决于数据集中的最大值)。训练在单个gpu盒上进行,并具有整个数据集。然而,预测适用于单节点设置,因为它具有训练中使用的所有数据。但是,当使用多节点集群时,数据集会被拆分,这使得每个节点的max-value不同。这导致了错误。
我现在已经使预期的形状与数据集无关,并且不再发生此错误。我希望这能澄清事情。