我有一个服务帐户,我已授予Viewer角色,并已下载凭据json文件并为其设置正确的环境变量。我想在这里运行这个例子:
def predict_json(project, model, instances, version=None):
"""Send json data to a deployed model for prediction.
Args:
project (str): project where the Cloud ML Engine Model is deployed.
model (str): model name.
instances ([Mapping[str: Any]]): Keys should be the names of Tensors
your deployed model expects as inputs. Values should be datatypes
convertible to Tensors, or (potentially nested) lists of datatypes
convertible to tensors.
version: str, version of the model to target.
Returns:
Mapping[str: any]: dictionary of prediction results defined by the
model.
"""
# Create the ML Engine service object.
# To authenticate set the environment variable
# GOOGLE_APPLICATION_CREDENTIALS=<path_to_service_account_file>
service = googleapiclient.discovery.build('ml', 'v1beta1')
name = 'projects/{}/models/{}'.format(project, model)
if version is not None:
name += '/versions/{}'.format(version)
response = service.projects().predict(
name=name,
body={'instances': instances}
).execute()
if 'error' in response:
raise RuntimeError(response['error'])
return response['predictions']
然而,这给了我403和错误The user doesn't have the required permission ml.versions.predict on the resource projects/project/models/model/versions/version
。我不确定我做错了什么 - 我为凭证设置了正确的环境变量,根据他们的文档,服务帐户只需要Viewer角色来访问此端点。我做错了什么?
答案 0 :(得分:1)
tl; dr discovery.build可能没有使用预期的服务帐户,因为它尝试了许多身份验证选项
我建议明确而不是依赖于Using CloudML prediction API in production without gcloud中的默认行为。此外,如果您致电:
,您的项目IAM设置可能不包括服务帐户gcloud --project "$PROJECT" get-iam-policy
您是否看到具有角色/查看者或更高级别的预期服务帐户?如果不是,您需要授予它权限。它在服务帐户页面中的存在仅表示您拥有该服务帐户,而不是允许它执行任何操作!
答案 1 :(得分:0)
Solved the same problem with the next steps:
Call it using
from oauth2client.service_account import ServiceAccountCredentials
from googleapiclient import discovery
credentials = ServiceAccountCredentials.from_json_keyfile_name('your_creds.json')
service = discovery.build('ml', 'v1', credentials=credentials)