Python [<generator expression =“”>]至少比列表快3倍(<generator expression =“”>)?</generator> </generator>

时间:2010-12-09 20:35:11

标签: python performance profiling

在生成器表达式(test1)周围使用[]似乎比将其放在list()(test2)中要好得多。当我只是将列表传递给list()以进行浅拷贝(test3)时,速度就不存在了。这是为什么?

证据:

from timeit import Timer

t1 = Timer("test1()", "from __main__ import test1")
t2 = Timer("test2()", "from __main__ import test2")
t3 = Timer("test3()", "from __main__ import test3")

x = [34534534, 23423523, 77645645, 345346]

def test1():
    [e for e in x]

print t1.timeit()
#0.552290201187


def test2():
    list(e for e in x)

print t2.timeit()
#2.38739395142

def test3():
    list(x)

print t3.timeit()
#0.515818119049

机器:64位AMD,Ubuntu 8.04,Python 2.7(r27:82500)

4 个答案:

答案 0 :(得分:34)

嗯,我的第一步是独立设置两个测试,以确保这不是由例如定义函数的顺序。

>python -mtimeit "x=[34534534, 23423523, 77645645, 345346]" "[e for e in x]"
1000000 loops, best of 3: 0.638 usec per loop

>python -mtimeit "x=[34534534, 23423523, 77645645, 345346]" "list(e for e in x)"
1000000 loops, best of 3: 1.72 usec per loop

果然,我可以复制这个。好的,下一步是查看字节码,看看实际发生了什么:

>>> import dis
>>> x=[34534534, 23423523, 77645645, 345346]
>>> dis.dis(lambda: [e for e in x])
  1           0 LOAD_CONST               0 (<code object <listcomp> at 0x0000000001F8B330, file "<stdin>", line 1>)
              3 MAKE_FUNCTION            0
              6 LOAD_GLOBAL              0 (x)
              9 GET_ITER
             10 CALL_FUNCTION            1
             13 RETURN_VALUE
>>> dis.dis(lambda: list(e for e in x))
  1           0 LOAD_GLOBAL              0 (list)
              3 LOAD_CONST               0 (<code object <genexpr> at 0x0000000001F8B9B0, file "<stdin>", line 1>)
              6 MAKE_FUNCTION            0
              9 LOAD_GLOBAL              1 (x)
             12 GET_ITER
             13 CALL_FUNCTION            1
             16 CALL_FUNCTION            1
             19 RETURN_VALUE

请注意,第一个方法直接创建列表,而第二个方法创建一个genexpr对象并将其传递给全局list。这可能是开销所在。

另请注意,差异大约是一微秒,即极其微不足道。


其他有趣的数据

这仍然适用于非平凡的列表

>python -mtimeit "x=range(100000)" "[e for e in x]"
100 loops, best of 3: 8.51 msec per loop

>python -mtimeit "x=range(100000)" "list(e for e in x)"
100 loops, best of 3: 11.8 msec per loop

以及不那么简单的地图功能:

>python -mtimeit "x=range(100000)" "[2*e for e in x]"
100 loops, best of 3: 12.8 msec per loop

>python -mtimeit "x=range(100000)" "list(2*e for e in x)"
100 loops, best of 3: 16.8 msec per loop

和(虽然不太强烈)如果我们过滤列表:

>python -mtimeit "x=range(100000)" "[e for e in x if e%2]"
100 loops, best of 3: 14 msec per loop

>python -mtimeit "x=range(100000)" "list(e for e in x if e%2)"
100 loops, best of 3: 16.5 msec per loop

答案 1 :(得分:9)

list(e for e in x)不是列表解析,而是创建genexpr对象(e for e in x)并将其传递给list工厂函数。据推测,对象创建和方法调用会产生开销。

答案 2 :(得分:2)

在python list中,必须在模块中查找名称,然后在内置中查找。虽然你无法改变列表理解意味着列表调用必须只是标准的查找+函数调用,因为它可以被重新定义为其他东西。

查看为理解而生成的vm代码,可以看到它在内联调用时是内联的。

>>> import dis
>>> def foo():
...     [x for x in xrange(4)]
... 
>>> dis.dis(foo)
  2           0 BUILD_LIST               0
              3 DUP_TOP             
              4 STORE_FAST               0 (_[1])
              7 LOAD_GLOBAL              0 (xrange)
             10 LOAD_CONST               1 (4)
             13 CALL_FUNCTION            1
             16 GET_ITER            
        >>   17 FOR_ITER                13 (to 33)
             20 STORE_FAST               1 (x)
             23 LOAD_FAST                0 (_[1])
             26 LOAD_FAST                1 (x)
             29 LIST_APPEND         
             30 JUMP_ABSOLUTE           17
        >>   33 DELETE_FAST              0 (_[1])
             36 POP_TOP             
             37 LOAD_CONST               0 (None)
             40 RETURN_VALUE        

>>> def bar():
...     list(x for x in xrange(4))
... 
>>> dis.dis(bar)
  2           0 LOAD_GLOBAL              0 (list)
              3 LOAD_CONST               1 (<code object <genexpr> at 0x7fd1230cf468, file "<stdin>", line 2>)
              6 MAKE_FUNCTION            0
              9 LOAD_GLOBAL              1 (xrange)
             12 LOAD_CONST               2 (4)
             15 CALL_FUNCTION            1
             18 GET_ITER            
             19 CALL_FUNCTION            1
             22 CALL_FUNCTION            1
             25 POP_TOP             
             26 LOAD_CONST               0 (None)
             29 RETURN_VALUE  

答案 3 :(得分:1)

您的test2大致相当于:

def test2():
    def local():
        for i in x:
            yield i
    return list(local())

呼叫开销解释了处理时间的增加。