我想在keras中使用上采样2D图层,这样我就可以用十进制因子(在这种情况下从[213,213]到[640,640])增加图像大小。该层按预期编译,但是当我想在实际图像上进行训练或预测时,它们仅通过与输入因子最接近的整数进行上采样。任何的想法?详情如下:
网络:
mp_size = (3,3)
inputs = Input(input_data.shape[1:])
lay1 = Conv2D(32, (3,3), strides=(1,1), activation='relu', padding='same', kernel_initializer='glorot_normal')(inputs)
lay2 = MaxPooling2D(pool_size=mp_size)(lay1)
lay3 = Conv2D(32, (3,3), strides=(1,1), activation='relu', padding='same', kernel_initializer='glorot_normal')(lay2)
size1=lay3.get_shape()[1:3]
size2=lay1.get_shape()[1:3]
us_size = size2[0].value/size1[0].value, size2[1].value/size1[1].value
lay4 = Concatenate(axis=-1)([UpSampling2D(size=us_size)(lay3),lay1])
lay5 = Conv2D(1, (1, 1), strides=(1,1), activation='sigmoid')(lay4)
model = Model(inputs=inputs, outputs=lay5)
使用model.summary()
时的网络摘要:
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_4 (InputLayer) (None, 640, 640, 2) 0
____________________________________________________________________________________________________
conv2d_58 (Conv2D) (None, 640, 640, 32) 608 input_4[0][0]
____________________________________________________________________________________________________
max_pooling2d_14 (MaxPooling2D) (None, 213, 213, 32) 0 conv2d_58[0][0]
____________________________________________________________________________________________________
conv2d_59 (Conv2D) (None, 213, 213, 32) 9248 max_pooling2d_14[0][0]
____________________________________________________________________________________________________
up_sampling2d_14 (UpSampling2D) (None, 640.0, 640.0, 0 conv2d_59[0][0]
____________________________________________________________________________________________________
concatenate_14 (Concatenate) (None, 640.0, 640.0, 0 up_sampling2d_14[0][0]
conv2d_58[0][0]
____________________________________________________________________________________________________
conv2d_60 (Conv2D) (None, 640.0, 640.0, 65 concatenate_14[0][0]
====================================================================================================
Total params: 9,921
Trainable params: 9,921
Non-trainable params: 0
培训网络时出错:
InvalidArgumentError: ConcatOp : Dimensions of inputs should match: shape[0] = [1,639,639,32] vs. shape[1] = [1,640,640,32]
[[Node: concatenate_14/concat = ConcatV2[N=2, T=DT_FLOAT, Tidx=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](up_sampling2d_14/ResizeNearestNeighbor, conv2d_58/Relu, concatenate_14/concat/axis)]]
答案 0 :(得分:0)
可以使用以下代码解决该问题:
from keras.layers import UpSampling2D
from keras.utils.generic_utils import transpose_shape
class UpSamplingUnet(UpSampling2D):
def compute_output_shape(self, input_shape):
size_all_dims = (1,) + self.size + (1,)
spatial_axes = list(range(1, 1 + self.rank))
size_all_dims = transpose_shape(size_all_dims,
self.data_format,
spatial_axes)
output_shape = list(input_shape)
for dim in range(len(output_shape)):
if output_shape[dim] is not None:
output_shape[dim] *= size_all_dims[dim]
output_shape[dim]=int(output_shape[dim])
return tuple(output_shape)
然后将UpSampling2D(size=us_size)
更改为UpSamplingUnet(size=us_size)
。