我有一个Python Pandas数据帧。
我尝试创建一个新列AddNewData
,该列是total_str
和colA
中的值列表。
这是预期的输出:
colB
答案 0 :(得分:2)
#replace nan with empty list and then concatenate colA and colB using sum.
df['total_str'] = df.applymap(lambda x: [] if x is np.nan else x).apply(lambda x: sum(x,[]), axis=1)
df
Out[705]:
colA colB total_str
0 [a, b, c] [a, b, c] [a, b, c, a, b, c]
1 [a, b, c] NaN [a, b, c]
2 [a, b, c] [d, e] [a, b, c, d, e]
如果DF中有其他列,您可以使用:
df['total_str'] = df.applymap(lambda x: [] if x is np.nan else x).apply(lambda x: x.colA+x.colB, axis=1)
答案 1 :(得分:1)
chain
为你做这个伎俩。
itertools.chain(*filter(bool, [colA, colB]))
这将返回一个迭代器,如果需要,可以使用list
结果来获取列表,例如
import itertools
def test(colA, colB):
total_str = itertools.chain(*filter(bool, [colA, colB]))
print list(total_str)
test(['a', 'b'], ['c']) # output: ['a', 'b', 'c']
test(['a', 'b', 'd'], None) # output: ['a', 'b', 'c']
test(['a', 'b', 'd'], ['x', 'y', 'z']) # ['a', 'b', 'd', 'x', 'y', 'z']
test(None, None) # output []
答案 2 :(得分:0)
我假设您要在数据框中处理numpy.nan
和None
。在创建新列时,您可以简单地编写一个辅助函数来用空列表替换它们。它不干净但有效。
def helper(x):
return x if x is not np.nan and x is not None else []
dataframe['total_str'] = dataframe['colA'].map(helper) + dataframe['colB'].map(helper)
答案 3 :(得分:0)
使用combine_first
替换NaN
以清空list
以获得更快的解决方案:
df['total_str'] = df['colA'] + df['colB'].combine_first(pd.Series([[]], index=df.index))
print (df)
colA colB total_str
0 [a, b, c] [a, b, c] [a, b, c, a, b, c]
1 [a, b, c] NaN [a, b, c]
2 [a, b, c] [d, e] [a, b, c, d, e]
df['total_str'] = df['colA'].add(df['colB'].combine_first(pd.Series([[]], index=df.index)))
print (df)
colA colB total_str
0 [a, b, c] [a, b, c] [a, b, c, a, b, c]
1 [a, b, c] NaN [a, b, c]
2 [a, b, c] [d, e] [a, b, c, d, e]
<强>计时强>:
df = pd.DataFrame({'colA': [['a','b','c']] * 3, 'colB':[['a','b','c'], np.nan, ['d','e']]})
#[30000 rows x 2 columns]
df = pd.concat([df]*10000).reset_index(drop=True)
#print (df)
In [62]: %timeit df['total_str'] = df['colA'].combine_first(pd.Series([[]], index=df.index)) + df['colB'].combine_first(pd.Series([[]], index=df.index))
100 loops, best of 3: 8.1 ms per loop
In [63]: %timeit df['total_str1'] = df['colA'].fillna(pd.Series([[]], index=df.index)) + df['colB'].fillna(pd.Series([[]], index=df.index))
100 loops, best of 3: 9.1 ms per loop
In [64]: %timeit df['total_str2'] = df.applymap(lambda x: [] if x is np.nan else x).apply(lambda x: x.colA+x.colB, axis=1)
1 loop, best of 3: 960 ms per loop
答案 4 :(得分:-1)
你可以像这样在pandas中添加列:
dataframe['total_str'] = dataframe['colA'] + dataframe['colB']