我有大量的产品描述数据,需要将产品名称和意图与描述分开,我发现在使用POS标签标记文本后分离NNP标签对于进一步清理有一定帮助。
我有以下类似的数据,我想只过滤NNP标记,并希望它们在各自的列表中进行过滤,但无法这样做。
data = [[('User', 'NNP'),
('is', 'VBZ'),
('not', 'RB'),
('able', 'JJ'),
('to', 'TO'),
('order', 'NN'),
('products', 'NNS'),
('from', 'IN'),
('iShopCatalog', 'NN'),
('Coala', 'NNP'),
('excluding', 'VBG'),
('articles', 'NNS'),
('from', 'IN'),
('VWR', 'NNP')],
[('Arfter', 'NNP'),
('transferring', 'VBG'),
('the', 'DT'),
('articles', 'NNS'),
('from', 'IN'),
('COALA', 'NNP'),
('to', 'TO'),
('SRM', 'VB'),
('the', 'DT'),
('Category', 'NNP'),
('S9901', 'NNP'),
('Dummy', 'NNP'),
('is', 'VBZ'),
('maintained', 'VBN')],
[('Due', 'JJ'),
('to', 'TO'),
('this', 'DT'),
('the', 'DT'),
('user', 'NN'),
('is', 'VBZ'),
('not', 'RB'),
('able', 'JJ'),
('to', 'TO'),
('order', 'NN'),
('the', 'DT'),
('product', 'NN')],
[('All', 'DT'),
('other', 'JJ'),
('users', 'NNS'),
('can', 'MD'),
('order', 'NN'),
('these', 'DT'),
('articles', 'NNS')],
[('She', 'PRP'),
('can', 'MD'),
('order', 'NN'),
('other', 'JJ'),
('products', 'NNS'),
('from', 'IN'),
('a', 'DT'),
('POETcatalog', 'NNP'),
('without', 'IN'),
('any', 'DT'),
('problems', 'NNS')],
[('Furtheremore', 'IN'),
('she', 'PRP'),
('is', 'VBZ'),
('able', 'JJ'),
('to', 'TO'),
('order', 'NN'),
('products', 'NNS'),
('from', 'IN'),
('the', 'DT'),
('Vendor', 'NNP'),
('VWR', 'NNP'),
('through', 'IN'),
('COALA', 'NNP')],
[('But', 'CC'),
('articles', 'NNS'),
('from', 'IN'),
('all', 'DT'),
('other', 'JJ'),
('suppliers', 'NNS'),
('are', 'VBP'),
('not', 'RB'),
('orderable', 'JJ')],
[('I', 'PRP'),
('already', 'RB'),
('spoke', 'VBD'),
('to', 'TO'),
('anic', 'VB'),
('who', 'WP'),
('maintain', 'VBP'),
('the', 'DT'),
('catalog', 'NN'),
('COALA', 'NNP'),
('and', 'CC'),
('they', 'PRP'),
('said', 'VBD'),
('that', 'IN'),
('the', 'DT'),
('reason', 'NN'),
('should', 'MD'),
('be', 'VB'),
('the', 'DT'),
('assignment', 'NN'),
('of', 'IN'),
('the', 'DT'),
('plant', 'NN')],
[('User', 'NNP'),
('is', 'VBZ'),
('a', 'DT'),
('assinged', 'JJ'),
('to', 'TO'),
('Universitaet', 'NNP'),
('Regensburg', 'NNP'),
('in', 'IN'),
('Scout', 'NNP'),
('but', 'CC'),
('in', 'IN'),
('P17', 'NNP'),
('table', 'NN'),
('YESRMCDMUSER01', 'NNP'),
('she', 'PRP'),
('is', 'VBZ'),
('assigned', 'VBN'),
('to', 'TO'),
('company', 'NN'),
('001500', 'CD'),
('Merck', 'NNP'),
('KGaA', 'NNP')],
[('Please', 'NNP'),
('find', 'VB'),
('attached', 'JJ'),
('some', 'DT'),
('screenshots', 'NNS')]]
我写了以下代码:
def prodname(a):
p = []
for i in a:
for j in range(len(i)):
if i[j][1]=='NNP':
p.append(i[j][0])
return p
提供以下输出:
['User',
'Coala',
'VWR',
'Arfter',
'COALA',
'Category',
'S9901',
'Dummy',
'POETcatalog',
'Vendor',
'VWR',
'COALA',
'COALA',
'User',
'Universitaet',
'Regensburg',
'Scout',
'P17',
'YESRMCDMUSER01',
'Merck',
'KGaA',
'Please']
我想得到的输出是:
[['User',
'Coala',
'VWR']
['Arfter',
'COALA',
'Category',
'S9901',
'Dummy']
[],
[],
['POETcatalog'],
['Vendor',
'VWR',
'COALA'],
[],
['COALA'],
['User',
'Universitaet',
'Regensburg',
'Scout',
'P17',
'YESRMCDMUSER01',
'Merck',
'KGaA'],
['Please']]
还尝试使用[[] for i in range(len(data)]
附加到各自的列表,但不能这样做。
答案 0 :(得分:1)
您可以使用此列表理解:
[[j[0] for j in i if j[-1]=="NNP"] for i in data]
输出:
[['User', 'Coala', 'VWR'], ['Arfter', 'COALA', 'Category', 'S9901', 'Dummy'], [], [], ['POETcatalog'], ['Vendor', 'VWR', 'COALA'], [], ['COALA'], ['User', 'Universitaet', 'Regensburg', 'Scout', 'P17', 'YESRMCDMUSER01', 'Merck', 'KGaA'], ['Please']]
答案 1 :(得分:1)
列表理解是要走的路。但是@McGrady的回答可能有点难以阅读。
这是一个更易于阅读的解决方案:
document = [[('User', 'NNP'), ('is', 'VBZ'), ('not', 'RB'), ('able', 'JJ'), ('to', 'TO'), ('order', 'NN'), ('products', 'NNS'), ('from', 'IN'), ('iShopCatalog', 'NN'), ('Coala', 'NNP'), ('excluding', 'VBG'), ('articles', 'NNS'), ('from', 'IN'), ('VWR', 'NNP')], [('Arfter', 'NNP'), ('transferring', 'VBG'), ('the', 'DT'), ('articles', 'NNS'), ('from', 'IN'), ('COALA', 'NNP'), ('to', 'TO'), ('SRM', 'VB'), ('the', 'DT'), ('Category', 'NNP'), ('S9901', 'NNP'), ('Dummy', 'NNP'), ('is', 'VBZ'), ('maintained', 'VBN')], [('Due', 'JJ'), ('to', 'TO'), ('this', 'DT'), ('the', 'DT'), ('user', 'NN'), ('is', 'VBZ'), ('not', 'RB'), ('able', 'JJ'), ('to', 'TO'), ('order', 'NN'), ('the', 'DT'), ('product', 'NN')], [('All', 'DT'), ('other', 'JJ'), ('users', 'NNS'), ('can', 'MD'), ('order', 'NN'), ('these', 'DT'), ('articles', 'NNS')], [('She', 'PRP'), ('can', 'MD'), ('order', 'NN'), ('other', 'JJ'), ('products', 'NNS'), ('from', 'IN'), ('a', 'DT'), ('POETcatalog', 'NNP'), ('without', 'IN'), ('any', 'DT'), ('problems', 'NNS')], [('Furtheremore', 'IN'), ('she', 'PRP'), ('is', 'VBZ'), ('able', 'JJ'), ('to', 'TO'), ('order', 'NN'), ('products', 'NNS'), ('from', 'IN'), ('the', 'DT'), ('Vendor', 'NNP'), ('VWR', 'NNP'), ('through', 'IN'), ('COALA', 'NNP')], [('But', 'CC'), ('articles', 'NNS'), ('from', 'IN'), ('all', 'DT'), ('other', 'JJ'), ('suppliers', 'NNS'), ('are', 'VBP'), ('not', 'RB'), ('orderable', 'JJ')], [('I', 'PRP'), ('already', 'RB'), ('spoke', 'VBD'), ('to', 'TO'), ('anic', 'VB'), ('who', 'WP'), ('maintain', 'VBP'), ('the', 'DT'), ('catalog', 'NN'), ('COALA', 'NNP'), ('and', 'CC'), ('they', 'PRP'), ('said', 'VBD'), ('that', 'IN'), ('the', 'DT'), ('reason', 'NN'), ('should', 'MD'), ('be', 'VB'), ('the', 'DT'), ('assignment', 'NN'), ('of', 'IN'), ('the', 'DT'), ('plant', 'NN')], [('User', 'NNP'), ('is', 'VBZ'), ('a', 'DT'), ('assinged', 'JJ'), ('to', 'TO'), ('Universitaet', 'NNP'), ('Regensburg', 'NNP'), ('in', 'IN'), ('Scout', 'NNP'), ('but', 'CC'), ('in', 'IN'), ('P17', 'NNP'), ('table', 'NN'), ('YESRMCDMUSER01', 'NNP'), ('she', 'PRP'), ('is', 'VBZ'), ('assigned', 'VBN'), ('to', 'TO'), ('company', 'NN'), ('001500', 'CD'), ('Merck', 'NNP'), ('KGaA', 'NNP')], [('Please', 'NNP'), ('find', 'VB'), ('attached', 'JJ'), ('some', 'DT'), ('screenshots', 'NNS')]]
output = [[word for word, pos in sentence if pos=='NNP'] for sentence in document]
如果你喜欢更清晰的代码,你可以围绕嵌套列表理解,https://stackoverflow.com/a/3633145/610569:
output = [word for sentence in document for word, pos in sentence if pos=='NNP']