我正在尝试整合spark 1.6.1和kafka_2.10-0.8.2.1 / kafka_2.10-0.9.0.1。使用kafka_2.10-0.9.0.1
使用如下所示的DirectStream,它失败了
val kafkaStreams = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](
ssc,
Map("group.id" -> "group",
"auto.offset.reset" -> "smallest",
"metadata.broker.list" -> "127.0.0.1:9092",
"bootstrap.servers"-> "127.0.0.1:9092"),
Set("tweets")
)
将异常视为
Exception in thread "main" java.lang.ClassCastException: kafka.cluster.BrokerEndPoint cannot be cast to kafka.cluster.Broker
at org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$2$$anonfun$3$$anonfun$apply$6$$anonfun$apply$7.apply(KafkaCluster.scala:90)
at scala.Option.map(Option.scala:145)
at org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$2$$anonfun$3$$anonfun$apply$6.apply(KafkaCluster.scala:90)
at org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$2$$anonfun$3$$anonfun$apply$6.apply(KafkaCluster.scala:87)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251)
at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105)
at org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$2$$anonfun$3.apply(KafkaCluster.scala:87)
at org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$2$$anonfun$3.apply(KafkaCluster.scala:86)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
at scala.collection.immutable.Set$Set1.foreach(Set.scala:74)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251)
at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105)
at org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$2.apply(KafkaCluster.scala:86)
at org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$2.apply(KafkaCluster.scala:85)
at scala.util.Either$RightProjection.flatMap(Either.scala:523)
at org.apache.spark.streaming.kafka.KafkaCluster.findLeaders(KafkaCluster.scala:85)
at org.apache.spark.streaming.kafka.KafkaCluster.getLeaderOffsets(KafkaCluster.scala:179)
at org.apache.spark.streaming.kafka.KafkaCluster.getLeaderOffsets(KafkaCluster.scala:161)
at org.apache.spark.streaming.kafka.KafkaCluster.getLatestLeaderOffsets(KafkaCluster.scala:150)
at org.apache.spark.streaming.kafka.KafkaUtils$$anonfun$5.apply(KafkaUtils.scala:215)
at org.apache.spark.streaming.kafka.KafkaUtils$$anonfun$5.apply(KafkaUtils.scala:211)
at scala.util.Either$RightProjection.flatMap(Either.scala:523)
at org.apache.spark.streaming.kafka.KafkaUtils$.getFromOffsets(KafkaUtils.scala:211)
at org.apache.spark.streaming.kafka.KafkaUtils$.createDirectStream(KafkaUtils.scala:484)
我浏览了链接" kafka.cluster.BrokerEndPoint cannot be cast to kafka.cluster.Broker"其中提到kafka 0.9与spark 1.6.1不兼容,并且如我们所建议的那样我们使用了kafka 0.8.2.1,但我们仍然面临同样的问题。
Environement: Scala -2.10.3,spark-1.6.1,kafka(0.8 / 0.9)
Library dependency
"org.apache.spark" % "spark-core_2.10" % "1.6.1",
"org.apache.spark" % "spark-sql_2.10" % "1.6.1",
"org.apache.spark" % "spark-streaming_2.10" % "1.6.1",
"org.apache.spark" % "spark-streaming-kafka_2.10" % "1.6.1",
"org.apache.kafka" %% "kafka" % "0.8.0.1"
Please let me know if find anything inappropriate, Thanks in advance.
答案 0 :(得分:0)
I have used IO confluent which is wrapper on Kafka to resolve the issue. Confluent provides simple API and extended features to support avro cleanly. It provides Schema Registry to store multiple versions of Avro and no need to pass avro schema from kafka producer to kafka consumer,it is handled by Confluent.
For more clarification and features please visit https://www.confluent.io/
I have used confluent 2 which is available at https://www.confluent.io/download/
Library Dependency
libraryDependencies ++= Seq(
"io.confluent" % "kafka-avro-serializer" % "2.0.0",
"org.apache.spark" % "spark-streaming_2.11" % "1.6.1" % "provided".
)
resolvers ++= Seq(
Resolver.sonatypeRepo("public"),
"Confluent Maven Repo" at "http://packages.confluent.io/maven/"
)
Code sample
val dStream:InputDStream[ConsumerRecord[String, GenericRecord]] =
KafkaUtils.createDirectStream[String, GenericRecord](
streamingContext, PreferConsistent, Subscribe[String, GenericRecord](topics,
kafkaParams))
You can iterate over dStream and do business logic.