使用geom_text在填充条形图中居中标签

时间:2017-05-15 21:06:27

标签: r ggplot2 bar-chart labels

我是ggplot2(和R)的新手,我正在尝试制作一个填充的条形图,每个框中都有标签,表示构成该块的百分比。

以下是我想要添加标签的当前图形的示例:

##ggplot figure 
library(gpplot2)
library(scales) 

#specify order I want in plots
ZIU$Affinity=factor(ZIU$Affinity, levels=c("High", "Het", "Low"))
ZIU$Group=factor(ZIU$Group, levels=c("ZUM", "ZUF", "ZIM", "ZIF"))

ggplot(ZIU, aes(x=Group))+
geom_bar(aes(fill=Affinity), position="fill", width=1, color="black")+
scale_y_continuous(labels=percent_format())+
scale_fill_manual("Affinity", values=c("High"="blue", "Het"="lightblue", "Low"="gray"))+
labs(x="Group", y="Percent Genotype within Group")+
ggtitle("Genotype Distribution", "by Group")

I would like to add labels centered in each box with the percentage that box represents

我尝试使用此代码添加标签,但它会不断产生错误消息"错误:geom_text需要以下缺失的美学:y"但我的情节没有美学,这是否意味着我不能使用geom_text? (另外,我不确定如果y审美问题得到解决,如果geom_text语句的其余部分将完成我想要的,则在每个框中居中显示白色标签。)

ggplot(ZIU, aes(x=Group)) +
geom_bar(aes(fill=Affinity), position="fill", width=1, color="black")+
geom_text(aes(label=paste0(sprintf("%.0f", ZIU$Affinity),"%")),
    position=position_fill(vjust=0.5), color="white")+
scale_y_continuous(labels=percent_format())+
scale_fill_manual("Affinity", values=c("High"="blue", "Het"="lightblue", "Low"="gray"))+
labs(x="Group", y="Percent Genotype within Group")+
ggtitle("Genotype Distribution", "by Group")

此外,如果有人建议消除NA值,那将是值得赞赏的!我试过了

geom_bar(aes(fill=na.omit(Affinity)), position="fill", width=1, color="black")

但是得到错误"错误:美学必须是长度1或与数据相同(403):fill,x"

 dput(sample)
 structure(list(Group = structure(c(3L, 3L, 3L, 3L, 3L, 3L, 3L, 
 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 
 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
 2L), .Label = c("ZUM", "ZUF", "ZIM", "ZIF"), class = "factor"), 
StudyCode = c(1, 2, 3, 4, 5, 6, 20, 21, 22, 23, 143, 144, 
145, 191, 192, 193, 194, 195, 196, 197, 10, 24, 25, 26, 27, 
28, 71, 72, 73, 74, 274, 275, 276, 277, 278, 279, 280, 290, 
291, 292), Affinity = structure(c(3L, 2L, 1L, 2L, 3L, 1L, 
1L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, 3L, 2L, 3L, 1L, 1L, 1L, 3L, 
2L, 1L, 2L, 2L, 1L, 2L, 2L, 3L, 3L, 2L, 1L, 3L, 2L, 1L, 3L, 
3L, 2L, 2L, 2L), .Label = c("High", "Het", "Low"), class = "factor")), .Names = c("Group", 
"StudyCode", "Affinity"), row.names = c(NA, 40L), class = c("tbl_df", 
"tbl", "data.frame"))

非常感谢你!

1 个答案:

答案 0 :(得分:1)

链接的示例具有y美学,因为数据是预先汇总的,而不是让ggplot在内部进行计数。对于您的数据,类似的方法是:

library(scales) 
library(tidyverse)

# Summarize data to get counts and percentages
ZIU %>% group_by(Group, Affinity) %>%
  tally %>%
  mutate(percent=n/sum(n)) %>%   # Pipe summarized data into ggplot
  ggplot(aes(x=Group, y=percent, fill=Affinity)) +
   geom_bar(stat="identity", width=1, color="black") +
   geom_text(aes(label=paste0(sprintf("%1.1f", percent*100),"%")), 
             position=position_stack(vjust=0.5), colour="white") +
   scale_y_continuous(labels=percent_format()) +
   scale_fill_manual("Affinity", values=c("High"="blue", "Het"="lightblue", "Low"="gray")) +
   labs(x="Group", y="Percent Genotype within Group") +
   ggtitle("Genotype Distribution", "by Group")

enter image description here

另一个选择是使用线图,这可能会使相对值更清晰。假设Group值不构成自然序列,那么这些行就可以作为区分不同Affinity值的Group值的指南。

ZIU %>% group_by(Group, Affinity) %>%
  tally %>%
  mutate(percent=n/sum(n)) %>%   # Pipe summarized data into ggplot
  ggplot(aes(x=Group, y=percent, colour=Affinity, group=Affinity)) +
  geom_line(alpha=0.4) +
  geom_text(aes(label=paste0(sprintf("%1.1f", percent*100),"%")), show.legend=FALSE) +
  scale_y_continuous(labels=percent_format(), limits=c(0,1)) +
  labs(x="Group", y="Percent Genotype within Group") +
  ggtitle("Genotype Distribution", "by Group") +
  guides(colour=guide_legend(override.aes=list(alpha=1, size=1))) +
  theme_classic()

enter image description here