我想将以下数据帧转换为json。
df:
A sector B sector C sector
TTM Ratio -- 35.99 12.70 20.63 14.75 23.06
RRM Sales -- 114.57 1.51 5.02 1.00 4594.13
MQR book 1.48 2.64 1.02 2.46 2.73 2.74
TTR cash -- 14.33 7.41 15.35 8.59 513854.86
为了通过使用函数df.to_json()
来实现这一点,我需要在列和索引中使用唯一的名称。
因此我想要的是将列名转换为行并具有默认列号。总之,我想要以下输出:
df:
0 1 2 3 4 5
A sector B sector C sector
TTM Ratio -- 35.99 12.70 20.63 14.75 23.06
RRM Sales -- 114.57 1.51 5.02 1.00 4594.13
MQR book 1.48 2.64 1.02 2.46 2.73 2.74
TTR cash -- 14.33 7.41 15.35 8.59 513854.86
将列名称转换为第一行,以便我可以正确进行转换。
答案 0 :(得分:2)
使用list
range
和原始列名称分配:
print (range(len(df.columns)))
range(0, 6)
#for python2 list can be omit
df.columns = [list(range(len(df.columns))), df.columns]
df.columns = pd.MultiIndex.from_arrays([range(len(df.columns)), df.columns])
也可以使用RangeIndex
:
print (pd.RangeIndex(len(df.columns)))
RangeIndex(start=0, stop=6, step=1)
df.columns = pd.MultiIndex.from_arrays([pd.RangeIndex(len(df.columns)), df.columns])
print (df)
0 1 2 3 4 5
A sector B sector C sector
TTM Ratio -- 35.99 12.70 20.63 14.75 23.06
RRM Sales -- 114.57 1.51 5.02 1.00 4594.13
MQR book 1.48 2.64 1.02 2.46 2.73 2.74
TTR cash -- 14.33 7.41 15.35 8.59 513854.86
答案 1 :(得分:2)
您还可以在numpy中使用vstack:
>>> df
x y z
0 8 7 6
1 6 5 4
>>> pd.DataFrame(np.vstack([df.columns, df]))
0 1 2
0 x y z
1 8 7 6
2 6 5 4
在这种情况下,列变为实际的第一行。