Python Sklearn线性回归值误差

时间:2017-05-15 04:29:33

标签: python pandas machine-learning linear-regression sklearn-pandas

我一直在尝试使用sklearn进行线性回归。有时我得到一个值错误,有时它工作正常。我不知道使用哪种方法。 错误消息如下:

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/linear_model/base.py", line 512, in fit
    y_numeric=True, multi_output=True)
  File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/utils/validation.py", line 531, in check_X_y
    check_consistent_length(X, y)
  File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/utils/validation.py", line 181, in check_consistent_length
    " samples: %r" % [int(l) for l in lengths])
ValueError: Found input variables with inconsistent numbers of samples: [1, 200]

代码是这样的:

import pandas as pd
from sklearn.linear_model import LinearRegression
data = pd.read_csv('http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv', index_col=0);
x = data['TV']
y = data['Sales']
lm = LinearRegression()
lm.fit(x,y)

请帮帮我。我是一名学生,正试图学习机器学习的基础知识。

2 个答案:

答案 0 :(得分:1)

将您的X作为数据帧而不是系列传递,您可以使用[[]]“双括号”或to_frame()作为单个功能:

import pandas as pd
from sklearn.linear_model import LinearRegression
data = pd.read_csv('http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv', index_col=0);
x = data[['TV']]

或者

x = data['TV'].to_frame()
y = data['Sales']
lm = LinearRegression()
lm.fit(x,y)

输出:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

答案 1 :(得分:1)

lm.fit希望X成为

  

numpy数组或形状稀疏矩阵[n_samples,n_features]

您的x已成型:

In [6]: x.shape
Out[6]: (200,)

只需使用:

lm.fit(x.reshape(-1,1) ,y)