我有一个包含5个键的字典,每个键都指向一个列表(一个包含100行和5列的CSV文件)。列表的每一行都指向一个人的数据。我想提取每个列表的类似行并放入新列表或数组。所以最后我应该有100个列表/数组,这样每个列表/数组都包含用户的数据。然后我想做机器学习等实验。
这是我的例子:
My_dict={0,1,2,3}
0={id,var1,var2,var3
User1,med,high,low
User2,med,low,low
…,…,..,..,
User100,hih,low,med}
1={id,var1,var2,var3
User1,high,med,low
User2,high,med,low
…,…,..,..,
User100,low,low,med}
2={id,var1,var2,var3
User1,low,med,low
User2,med,med,low
…,…,..,..,
User100,med,low,med}
所以我想要一个可以试验的列表或数组数组列表。像这样:
User1={id,var1,var2,var3
User1,med,high,low
User1,high,med,low
User1,low,med,low
}
User2={d,var1,var2,var3
User2,med,high,low
User2,high,med,low
User2,low,med,low
}
答案 0 :(得分:1)
input_data = {"0":[["U1","med","low","high"],["U2","low","low","high"],["U3","high","low","high"]], "1": [["U1","med","low","high"],["U2","low","low","high"],["U3","high","low","high"]]}
# Assuming that above kind of data you have then below dict will be your output
users_dict = dict()
for key, users in input_data.iteritems():
for user in users:
users_dict.setdefault(user[0], []).append(user)