MCMC使用Python的主持人采样麦克斯韦曲线

时间:2017-05-14 13:56:11

标签: python probability mcmc emcee

我试图用emcee向MCMC采样介绍自己。我想简单地使用github上的一组示例代码https://github.com/dfm/emcee/blob/master/examples/quickstart.py从Maxwell Boltzmann分布中获取样本。

示例代码非常出色,但是当我将分布从高斯分布更改为麦克斯韦分布时,我收到错误, TypeError:lnprob()正好接受2个参数(给定3个)

然而,如果没有给出适当的参数,它就不会被调用?需要一些关于如何定义麦克斯韦曲线并使其适合此示例代码的指导。

这就是我所拥有的;

    from __future__ import print_function
import numpy as np
import emcee

try:
    xrange
except NameError:
    xrange = range
def lnprob(x, a, icov):
    pi = np.pi
    return np.sqrt(2/pi)*x**2*np.exp(-x**2/(2.*a**2))/a**3

ndim = 2
means = np.random.rand(ndim)

cov  = 0.5-np.random.rand(ndim**2).reshape((ndim, ndim))
cov  = np.triu(cov)
cov += cov.T - np.diag(cov.diagonal())
cov  = np.dot(cov,cov)


icov = np.linalg.inv(cov)


nwalkers = 50


p0 = [np.random.rand(ndim) for i in xrange(nwalkers)]


sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=[means, icov])

pos, prob, state = sampler.run_mcmc(p0, 5000)

sampler.reset()

sampler.run_mcmc(pos, 100000, rstate0=state)

由于

1 个答案:

答案 0 :(得分:1)

我认为我看到了一些问题。主要的一点是,主持人希望你给它想要抽样的概率分布函数的自然对数。所以,而不是:

def lnprob(x, a, icov):
    pi = np.pi
    return np.sqrt(2/pi)*x**2*np.exp(-x**2/(2.*a**2))/a**3

你会反而想要,例如

def lnprob(x, a):
    pi = np.pi
    if x < 0:
        return -np.inf
    else:
        return 0.5*np.log(2./pi) + 2.*np.log(x) - (x**2/(2.*a**2)) - 3.*np.log(a)

其中if ... else ...语句明确表示x的负值具有零概率(或对数空间中的-infinity)。

您也不必计算icov并将其传递给lnprob,因为在您链接的示例中,仅需要高斯案例。

致电时:

sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=[means, icov])

args值应该是您的lnprob函数所需的任何其他参数,因此在您的情况下,这将是您想要设置Maxwell-Boltxmann的a的值分发。这应该是单个值,而不是您在创建mean时设置的两个随机初始值。

总的来说,以下内容适用于您:

from __future__ import print_function

import emcee
import numpy as np
from numpy import pi as pi

# define the natural log of the Maxwell-Boltzmann distribution
def lnprob(x, a):               
    if x < 0:                                                                
        return -np.inf
    else:
        return 0.5*np.log(2./pi) + 2.*np.log(x) - (x**2/(2.*a**2)) - 3.*np.log(a)

# choose a value of 'a' for the distributions
a = 5. # I'm choosing 5!

# choose the number of walkers
nwalkers = 50

# set some initial points at which to calculate the lnprob
p0 = [np.random.rand(1) for i in xrange(nwalkers)]

# initialise the sampler
sampler = emcee.EnsembleSampler(nwalkers, 1, lnprob, args=[a])

# Run 5000 steps as a burn-in.
pos, prob, state = sampler.run_mcmc(p0, 5000)

# Reset the chain to remove the burn-in samples.
sampler.reset()

# Starting from the final position in the burn-in chain, sample for 100000 steps.
sampler.run_mcmc(pos, 100000, rstate0=state)

# lets check the samples look right
mbmean = 2.*a*np.sqrt(2./pi) # mean of Maxwell-Boltzmann distribution
print("Sample mean = {}, analytical mean = {}".format(np.mean(sampler.flatchain[:,0]), mbmean))
mbstd = np.sqrt(a**2*(3*np.pi-8.)/np.pi) # std. dev. of M-B distribution
print("Sample standard deviation = {}, analytical = {}".format(np.std(sampler.flatchain[:,0]), mbstd))