我尝试使用以下内容将数据类型float64
中的列转换为int64
df['column name'].astype(int64)
但收到了错误:
NameError:name' int64'未定义
该列有多少人,但格式为7500000.0
,我知道如何将此float64
更改为int64
?
答案 0 :(得分:42)
pandas 0.24 + 的解决方案,用于转换带缺失值的数字:
df = pd.DataFrame({'column name':[7500000.0,7500000.0, np.nan]})
print (df['column name'])
0 7500000.0
1 7500000.0
2 NaN
Name: column name, dtype: float64
df['column name'] = df['column name'].astype(np.int64)
ValueError:无法将非有限值(NA或inf)转换为整数
#http://pandas.pydata.org/pandas-docs/stable/user_guide/integer_na.html
df['column name'] = df['column name'].astype('Int64')
print (df['column name'])
0 7500000
1 7500000
2 NaN
Name: column name, dtype: Int64
我认为你需要施展到numpy.int64
:
df['column name'].astype(np.int64)
样品:
df = pd.DataFrame({'column name':[7500000.0,7500000.0]})
print (df['column name'])
0 7500000.0
1 7500000.0
Name: column name, dtype: float64
df['column name'] = df['column name'].astype(np.int64)
#same as
#df['column name'] = df['column name'].astype(pd.np.int64)
print (df['column name'])
0 7500000
1 7500000
Name: column name, dtype: int64
如果列中的某些NaN
需要将int
替换为某些0
(例如type
)fillna
,因为NaN
float
是df = pd.DataFrame({'column name':[7500000.0,np.nan]})
df['column name'] = df['column name'].fillna(0).astype(np.int64)
print (df['column name'])
0 7500000
1 0
Name: column name, dtype: int64
:
NaN
同时检查documentation - missing data casting rules
编辑:
使用df = pd.DataFrame({'column name':[7500000.0,np.nan]})
df['column name'] = df['column name'].values.astype(np.int64)
print (df['column name'])
0 7500000
1 -9223372036854775808
Name: column name, dtype: int64
转换值是错误的:
email
答案 1 :(得分:4)
您可能需要传入字符串'int64'
:
>>> import pandas as pd
>>> df = pd.DataFrame({'a': [1.0, 2.0]}) # some test dataframe
>>> df['a'].astype('int64')
0 1
1 2
Name: a, dtype: int64
有一些替代方法可以指定64位整数:
>>> df['a'].astype('i8') # integer with 8 bytes (64 bit)
0 1
1 2
Name: a, dtype: int64
>>> import numpy as np
>>> df['a'].astype(np.int64) # native numpy 64 bit integer
0 1
1 2
Name: a, dtype: int64
或直接在列上使用np.int64
(但会返回numpy.array
):
>>> np.int64(df['a'])
array([1, 2], dtype=int64)
答案 2 :(得分:1)
这在熊猫0.23.4中似乎有点小问题?
如果存在np.nan值,则将按预期抛出错误:
df['col'] = df['col'].astype(np.int64)
但是不会像我期望的那样使用“ ignore”来将任何值从float更改为int:
df['col'] = df['col'].astype(np.int64,errors='ignore')
如果我第一次转换np.nan,它会起作用:
df['col'] = df['col'].fillna(0).astype(np.int64)
df['col'] = df['col'].astype(np.int64)
现在我无法弄清楚如何弄清如何将空值代替零,因为这会将所有内容重新转换为浮点数:
df['col'] = df['col'].replace(0,np.nan)
答案 3 :(得分:0)
考虑使用
df['column name'].astype('Int64')
nan
将更改为NaN