我正在开展一个涉及预测雷达天气模式运动的个人项目。我有三个n个m numpy数组;一个具有降水强度值,一个具有该降水的X方向上的移动(以像素为单位),一个具有该降水的Y方向上的移动(以像素为单位)。我想使用这三个数组来确定沉淀像素的位置,使用其他两个数组中的偏移量。
xMax = currentReflectivity.shape[0]
yMax = currentReflectivity.shape[1]
for x in xrange(currentReflectivity.shape[0]):
for y in xrange(currentReflectivity.shape[1]):
targetPixelX = xOffsetArray[x,y] + x
targetPixelY = yOffsetArray[x,y] + y
targetPixelX = int(targetPixelX)
targetPixelY = int(targetPixelY)
if targetPixelX < xMax and targetPixelY < yMax:
interpolatedReflectivity[targetPixelX,targetPixelY] = currentReflectivity[x,y]
我无法想出一种对此进行矢量化的方法;任何想法?
答案 0 :(得分:3)
这是一个利用broadcasting
-
x_arr = np.arange(currentReflectivity.shape[0])[:,None]
y_arr = np.arange(currentReflectivity.shape[1])
targetPixelX_arr = (xOffsetArray[x_arr, y_arr] + x_arr).astype(int)
targetPixelY_arr = (yOffsetArray[x_arr, y_arr] + y_arr).astype(int)
valid_mask = (targetPixelX_arr < xMax) & (targetPixelY_arr < yMax)
R = targetPixelX_arr[valid_mask]
C = targetPixelY_arr[valid_mask]
interpolatedReflectivity[R,C] = currentReflectivity[valid_mask]
运行时测试
方法 -
def org_app(currentReflectivity, xOffsetArray, yOffsetArray):
m,n = currentReflectivity.shape
interpolatedReflectivity = np.zeros((m,n))
xMax = currentReflectivity.shape[0]
yMax = currentReflectivity.shape[1]
for x in xrange(currentReflectivity.shape[0]):
for y in xrange(currentReflectivity.shape[1]):
targetPixelX = xOffsetArray[x,y] + x
targetPixelY = yOffsetArray[x,y] + y
targetPixelX = int(targetPixelX)
targetPixelY = int(targetPixelY)
if targetPixelX < xMax and targetPixelY < yMax:
interpolatedReflectivity[targetPixelX,targetPixelY] = \
currentReflectivity[x,y]
return interpolatedReflectivity
def broadcasting_app(currentReflectivity, xOffsetArray, yOffsetArray):
m,n = currentReflectivity.shape
interpolatedReflectivity = np.zeros((m,n))
xMax, yMax = m,n
x_arr = np.arange(currentReflectivity.shape[0])[:,None]
y_arr = np.arange(currentReflectivity.shape[1])
targetPixelX_arr = (xOffsetArray[x_arr, y_arr] + x_arr).astype(int)
targetPixelY_arr = (yOffsetArray[x_arr, y_arr] + y_arr).astype(int)
valid_mask = (targetPixelX_arr < xMax) & (targetPixelY_arr < yMax)
R = targetPixelX_arr[valid_mask]
C = targetPixelY_arr[valid_mask]
interpolatedReflectivity[R,C] = currentReflectivity[valid_mask]
return interpolatedReflectivity
计时和验证 -
In [276]: # Setup inputs
...: m,n = 100,110 # currentReflectivity.shape
...: max_r = 120 # xOffsetArray's extent
...: max_c = 130 # yOffsetArray's extent
...:
...: currentReflectivity = np.random.rand(m, n)
...: xOffsetArray = np.random.randint(0,max_r,(m, n))
...: yOffsetArray = np.random.randint(0,max_c,(m, n))
...:
In [277]: out1 = org_app(currentReflectivity, xOffsetArray, yOffsetArray)
...: out2 = broadcasting_app(currentReflectivity, xOffsetArray, yOffsetArray)
...: print np.allclose(out1, out2)
...:
True
In [278]: %timeit org_app(currentReflectivity, xOffsetArray, yOffsetArray)
100 loops, best of 3: 6.86 ms per loop
In [279]: %timeit broadcasting_app(currentReflectivity, xOffsetArray, yOffsetArray)
1000 loops, best of 3: 212 µs per loop
In [280]: 6860.0/212 # Speedup number
Out[280]: 32.35849056603774
答案 1 :(得分:1)
我很确定你可以通过将所有内容从循环中取出来进行矢量化:
targetPixelX = (xOffsetArray + np.arange(xMax).reshape(xMax, 1)).astype(np.int)
targetPixelY = (yOffsetArray + np.arange(yMax)).astype(np.int)
mask = ((targetPixelX < xMax) & (targetPixelY < yMax))
interpolatedReflectivity[mask] = currentReflectivity[mask]
这将更快但内存更密集。基本上,targetPixelX
和targetPixelY
现在是包含每个像素的值的数组,这些值是在每次迭代的基础上计算出来的。
interpolatedReflectivity
中只设置了屏蔽值,与if
语句在循环中的操作类似。