内核重启内核似​​乎已经死了& dst tensor未初始化

时间:2017-05-12 14:08:27

标签: windows tensorflow gpu convolution

我正在使用Tensorflow(GPU)来适应CNN模型(总输入数据量只有9.8MB(np阵列格式)而我在Windows 10(Kaby Lake),Tensorflow GPU模式,Geforce GTX 1050, RAM 32GB。

每次我尝试运行下面这段代码时,它都会结束内核或引发错误“dst tensor not initialized”。这个代码似乎可以由比我的计算能力相对较低的其他人执行,但我不知道如何让它工作。

我可以在Tensorflow CPU模式下运行以下代码而没有任何问题(但是完成运行它需要将近12个小时,特别是在epoch设置为超过3个时)。这就是我需要使用GPU运行它以加快执行速度的原因。

import tensorflow as tf
import numpy as np

IMG_PX_SIZE = 50
HM_SLICES = 20

n_classes = 2

x = tf.placeholder('float')
y = tf.placeholder('float')

keep_rate = 0.8
keep_prob = tf.placeholder(tf.float32)

def conv3d(x, W):
return tf.nn.conv3d(x, W, strides=[1,1,1,1,1], padding='SAME')

def maxpool3d(x):
return tf.nn.max_pool3d(x, ksize=[1,2,2,2,1], strides=[1,2,2,2,1], 
                                              padding='SAME')

def convolutional_neural_network(x):
weights = {'W_conv1':tf.Variable(tf.random_normal([3,3,3,1,32])),
           'W_conv2':tf.Variable(tf.random_normal([3,3,3,32,64])),
           'W_fc':tf.Variable(tf.random_normal([62720 ,1024])),
           'out':tf.Variable(tf.random_normal([1024, n_classes]))}

biases = {'b_conv1':tf.Variable(tf.random_normal([32])),
          'b_conv2':tf.Variable(tf.random_normal([64])),
          'b_fc':tf.Variable(tf.random_normal([1024])),
          'out':tf.Variable(tf.random_normal([n_classes]))}

x = tf.reshape(x, shape=[-1, IMG_PX_SIZE, IMG_PX_SIZE, HM_SLICES, 1])

conv1 = tf.nn.relu(conv3d(x, weights['W_conv1']) + biases['b_conv1'])
conv1 = maxpool3d(conv1)

conv2 = tf.nn.relu(conv3d(conv1, weights['W_conv2']) + biases['b_conv2'])
conv2 = maxpool3d(conv2)

fc = tf.reshape(conv2,[-1, 62720  ])
fc = tf.nn.relu(tf.matmul(fc, weights['W_fc'])+biases['b_fc'])
fc = tf.nn.dropout(fc, keep_rate)

output = tf.matmul(fc, weights['out']) + biases['out']
return output

def train_neural_network(x):
much_data = np.load('muchdata_sampled-50-50-20.npy')
train_data = much_data[:100]
validation_data = much_data[-100:]

prediction = convolutional_neural_network(x)
cost = tf.reduce_mean( 
tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y) )
optimizer = tf.train.AdamOptimizer().minimize(cost)

hm_epochs = 3
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())

for epoch in range(hm_epochs):
    epoch_loss = 0
    for data in train_data:
        X = data[0]
        Y = data[1]
        _, c = sess.run([optimizer, cost], feed_dict={x: X, y: Y})
        epoch_loss += c

    print('Epoch', epoch, 'completed out of',hm_epochs,'loss:',epoch_loss)

correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))

accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:',accuracy.eval({x:[i[0] for i in validation_data], y:[i[1] 
                                                for i in validation_data]}))

train_neural_network(x)

请提供一些帮助,因为我现在已经坚持了一段时间。我唯一的建议是将数据分批提供给CNN,而不是将整个数据提供给CNN,但我还没有成功使用这种技术。有人可以指出一个方法吗?

0 个答案:

没有答案