lmer p值用于创建screenreg列出的星星

时间:2017-05-11 16:11:08

标签: r lme4

这可能是一个显而易见的问题,我还没有找到(R newbie)的答案,但是当使用lmer函数生成混合效果模型时,则使用以下方式显示结果:

screenreg(list(model4re), single.row = TRUE)

我们以星形的形式得到beta估计,标准误差和显着性水平的列表。

使用什么测试来确定标记星星的这些p值(重要的是我认识到如何使用这些模型适当地确定重要影响存在一些争论)以及我们如何提取用于这些模型的p值分?

2 个答案:

答案 0 :(得分:1)

可以找到R中可用于计算lmer估计参数的p值的方法的详细说明,输入?lme4::pvalues
下面我展示了计算Kenward-Roger校正测试的p值的代码:

library(lmerTest)
fm1 <- lmerTest::lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
lmerTest::anova(fm1)

#############
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
     Sum Sq Mean Sq NumDF DenDF F.value    Pr(>F)    
Days  30031   30031     1    17  45.853 3.264e-06 ***

stargazer包中的stargazer命令打印估算参数的p值:

library(stargazer)
fm2 <- lme4::lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
stargazer(fm2, type="text", report="vcp")

===============================================
                        Dependent variable:    
                    ---------------------------
                             Reaction          
-----------------------------------------------
Days                          10.467           
                             p = 0.000         

Constant                      251.405          
                             p = 0.000         

-----------------------------------------------
Observations                    180            
Log Likelihood               -871.814          
Akaike Inf. Crit.            1,755.628         
Bayesian Inf. Crit.          1,774.786         
===============================================
Note:               *p<0.1; **p<0.05; ***p<0.01  

答案 1 :(得分:1)

texreg中,lme4对象的p值由extract.lmerMod命令计算。
请参阅以下示例:

library(lme4)
data(oats, package="MASS")
(fm1 <- lmer(Y ~ V*N + (1| B/V), data = oats))

##############
Linear mixed model fit by REML ['merModLmerTest']
Formula: Y ~ V * N + (1 | B/V)
   Data: oats
REML criterion at convergence: 529.0285
Random effects:
 Groups   Name        Std.Dev.
 V:B      (Intercept) 10.30   
 B        (Intercept) 14.65   
 Residual             13.31   
Number of obs: 72, groups:  V:B, 18; B, 6
Fixed Effects:
        (Intercept)          VMarvellous             VVictory              N0.2cwt              N0.4cwt              N0.6cwt  
            80.0000               6.6667              -8.5000              18.5000              34.6667              44.8333  
VMarvellous:N0.2cwt     VVictory:N0.2cwt  VMarvellous:N0.4cwt     VVictory:N0.4cwt  VMarvellous:N0.6cwt     VVictory:N0.6cwt  
             3.3333              -0.3333              -4.1667               4.6667              -4.6667               2.1667
###############

使用extract.lmerMod我们得到:

extract.lmerMod(fm1)

###############
                         coef.      s.e.            p
(Intercept)         80.0000000  9.106977 1.570989e-18
VMarvellous          6.6666667  9.715025 4.925730e-01
VVictory            -8.5000000  9.715025 3.816101e-01
N0.2cwt             18.5000000  7.682954 1.604334e-02
N0.4cwt             34.6666667  7.682954 6.417271e-06
N0.6cwt             44.8333333  7.682954 5.365224e-09
VMarvellous:N0.2cwt  3.3333333 10.865337 7.590063e-01
VVictory:N0.2cwt    -0.3333333 10.865337 9.755259e-01
VMarvellous:N0.4cwt -4.1666667 10.865337 7.013620e-01
VVictory:N0.4cwt     4.6666667 10.865337 6.675591e-01
VMarvellous:N0.6cwt -4.6666667 10.865337 6.675591e-01
VVictory:N0.6cwt     2.1666667 10.865337 8.419413e-01

                           GOF dec. places
AIC                   559.0285        TRUE
BIC                   593.1785        TRUE
Log Likelihood       -264.5143        TRUE
Num. obs.              72.0000       FALSE
Num. groups: V:B       18.0000       FALSE
Num. groups: B          6.0000       FALSE
Var: V:B (Intercept)  106.0618        TRUE
Var: B (Intercept)    214.4771        TRUE
Var: Residual         177.0833        TRUE

查看extract.lmerMod函数,p值计算如下:

betas <- lme4::fixef(fm1)
Vcov <- vcov(fm1)
Vcov <- as.matrix(Vcov)
se <- sqrt(diag(Vcov))
zval <- betas/se
(pval <- 2 * pnorm(abs(zval), lower.tail = FALSE))

##################
        (Intercept)         VMarvellous            VVictory             N0.2cwt             N0.4cwt             N0.6cwt VMarvellous:N0.2cwt    VVictory:N0.2cwt 
       1.570989e-18        4.925730e-01        3.816101e-01        1.604334e-02        6.417271e-06        5.365224e-09        7.590063e-01        9.755259e-01 
VMarvellous:N0.4cwt    VVictory:N0.4cwt VMarvellous:N0.6cwt    VVictory:N0.6cwt 
       7.013620e-01        6.675591e-01        6.675591e-01        8.419413e-01