我正在遵循本教程的多元回归 - 二次分配程序http://www.umasocialmedia.com/socialnetworks/lecture-9-patterns-in-social-networks/。它用于研究节点的多重性,即年龄,性别属性。我试图为给定的上下文执行给定的代码。在本教程中,他们发现基于性别,同一政党,国家和票据共同点的相似性。首先,他们读取4个CSV文件并将其转换为矩阵格式。当我试图执行时,得到了这个错误
predicing_matrices [1,]中的错误< - gender_matrix: 要替换的项目数量不是替换长度的倍数
getwd()
library(sna)
#Load Same-County Network
county_network=read.csv(file.choose(),header=TRUE)
county_matrix=as.matrix(county_network)
#Load Same-Gender Network
gender_network=read.csv(file.choose(),header=TRUE)
gender_matrix=as.matrix(gender_network)
#Load Same-Party Network
party_network=read.csv(file.choose(),header=TRUE)
party_matrix=as.matrix(party_network)
#Load Number-Joint-Cosponsorships Network
cosp_network=read.csv(file.choose(),header=TRUE)
cosp_matrix=as.matrix(cosp_network)
#Join The Predicting Matrices Together
predicting_matrices <- array (NA, c(3, length(county_network[1,]), length(county_network[1,])))
predicting_matrices[1,,] <- county_matrix
Error in predicting_matrices[1, , ] <- county_matrix :
number of items to replace is not a multiple of replacement length
predicting_matrices[2,,] <- gender_matrix
Error in predicting_matrices[1, , ] <- gender_matrix :
number of items to replace is not a multiple of replacement length
predicting_matrices[3,,] <- party_matrix
Error in predicting_matrices[1, , ] <- party_matrix :
number of items to replace is not a multiple of replacement length
#Now Run a QAP Regression called model and Show the Results
model <- netlm(cosp_matrix,predicting_matrices)
Error in netlm(cosp_matrix, predicting_matrices) :
Homogeneous graph orders required in netlm.