对于非数字数据,Pandas read_hdf非常慢

时间:2017-05-09 13:47:22

标签: python performance python-3.x pandas hdf

使用pandas.read_hdf()读取大型hdf文件时,读取时间非常慢。我的hdf有5000万行,3列有整数,2列有字符串。使用to_hdf()以表格格式和索引编写此文件大约需要10分钟。虽然这也很慢,但我不太关心,因为读取速度更重要。

我尝试以固定/表格格式保存,有/无压缩,但读取时间介于2-5分钟之间。相比之下,相同数据的read_csv()需要4分钟。

我也尝试直接使用pytables读取hdf。这在6秒时快得多,这将是我希望看到的速度。

h5file = tables.open_file("data.h5", "r")
table = h5file.root.data.table.read()

我注意到文档中的所有速度比较仅使用数字数据,并且我自己运行这些数据也达到了相似的性能。

我想问一下,我是否可以采取一些措施来优化读取性能?

修改

以下是数据样本

               col_A     col_B    col_C     col_D                 col_E
30649671  1159660800  10217383        0  10596000                LACKEY
26198715  1249084800   0921720        0         0           KEY CLIFTON
19251910   752112000   0827092      104    243000                WEMPLE
47636877  1464739200  06247715        0         0                 FLOYD
14121495  1233446400  05133815        0    988000        OGU ALLYN CH 9
41171050  1314835200  7C140009        0     39000             DEBERRY A
45865543  1459468800   0314892       76    254000               SABRINA
13387355   970358400  04140585       19   6956000              LA PERLA
4186815    849398400  02039719        0  19208000  NPU UNIONSPIELHAGAN1
32666568   733622400  10072006        0   1074000                 BROWN

有关数据框的信息:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 52046850 entries, 0 to 52046849
Data columns (total 5 columns):
col_A        int64
col_B        object
col_C        int64
col_D        int64
col_E        object
dtypes: int64(3), object(2)
memory usage: 1.9+ GB

1 个答案:

答案 0 :(得分:4)

这是一个小型演示:

生成样本DF(1M行):

N = 10**6

df = pd.DataFrame({
    'n1': np.random.randint(10**6, size=N),
    'n2': np.random.randint(10**6, size=N),
    'n3': np.random.randint(10**6, size=N),
    's1': pd.util.testing.rands_array(10, size=N),
    's2': pd.util.testing.rands_array(40, size=N),
})

让我们以CSV,HDF5(固定,表格和表格+ data_columns=True)和Feather格式将其写入磁盘

df.to_csv(r'c:/tmp/test.csv', index=False)
df.to_hdf(r'c:/tmp/test_fix.h5', 'a')
df.to_hdf(r'c:/tmp/test_tab.h5', 'a', format='t')
df.to_hdf(r'c:/tmp/test_tab_idx.h5', 'a', format='t', data_columns=True)

import feather
feather.write_dataframe(df, 'c:/tmp/test.feather')

读:

In [2]: %timeit pd.read_csv(r'c:/tmp/test.csv')
1 loop, best of 3: 4.48 s per loop

In [3]: %timeit pd.read_hdf(r'c:/tmp/test_fix.h5','a')
1 loop, best of 3: 1.24 s per loop

In [4]: %timeit pd.read_hdf(r'c:/tmp/test_tab.h5','a')
1 loop, best of 3: 5.65 s per loop

In [5]: %timeit pd.read_hdf(r'c:/tmp/test_tab_idx.h5','a')
1 loop, best of 3: 5.6 s per loop

In [6]: %timeit feather.read_dataframe(r'c:/tmp/test.feather')
1 loop, best of 3: 589 ms per loop

有条件阅读 - 让我们只选择那些n2 <= 100000

的行
In [7]: %timeit pd.read_hdf(r'c:/tmp/test_tab_idx.h5','a', where="n2 <= 100000")
1 loop, best of 3: 1.18 s per loop

我们需要选择的数据越少(过滤后) - 它的速度越快:

In [8]: %timeit pd.read_hdf(r'c:/tmp/test_tab_idx.h5','a', where="n2 <= 100000 and n1 > 500000")
1 loop, best of 3: 763 ms per loop

In [10]: %timeit pd.read_hdf(r'c:/tmp/test_tab_idx.h5','a', where="n2 <= 100000 and n1 > 500000 and n3 < 50000")
1 loop, best of 3: 379 ms per loop

更新:对于Pandas版本0.20.0+,我们可以直接在羽毛格式中编写和阅读(感谢@jezrael for the hint):

In [3]: df.to_feather(r'c:/tmp/test2.feather')

In [4]: %timeit pd.read_feather(r'c:/tmp/test2.feather')
1 loop, best of 3: 583 ms per loop

生成DF的示例:

In [13]: df
Out[13]:
            n1      n2      n3          s1                                        s2
0       719458  808047  792611  Fjv4CoRv2b  2aWQTkutPlKkO38fRQh2tdh1BrnEFavmIsDZK17V
1       526092  950709  804869  dfG12EpzVI  YVZzhMi9sfazZEW9e2TV7QIvldYj2RPHw0TXxS2z
2       109107  801344  266732  aoyBuHTL9I  ui0PKJO8cQJwcvmMThb08agWL1UyRumYgB7jjmcw
3       873626  814409  895382  qQQms5pTGq  zvf4HTaKCISrdPK98ROtqPqpsG4WhSdEgbKNHy05
4       212776  596713  924623  3YXa4PViAn  7Y94ykHIHIEnjKvGphYfAWSINRZtJ99fCPiMrfzl
5       375323  401029  973262  j6QQwYzfsK  PNYOM2GpHdhrz9NCCifRsn8gIZkLHecjlk82o44Y
6       232655  937230   40883  NsI5Y78aLT  qiKvXcAdPVbhWbXnyD3uqIwzS7ZsCgssm9kHAETb
7        69010  438280  564194  N73tQaZjey  ttj1IHtjPyssyADMYiNScflBjN4SFv5bk3tbz93o
8       988081    8992  968871  eb9lc7D22T  sb3dt1Ndc8CUHyvsFJgWRrQg4ula7KJ76KrSSqGH
9       127155   66042  881861  tHSBB3RsNH  ZpZt5sxAU3zfiPniSzuJYrwtrytDvqJ1WflJ4vh3
...        ...     ...     ...         ...                                       ...
999990  805220   21746  355944  IMCMWuf97L  bj7tSrgudA5wLvWkWVQyNVamSGmFGOeQlIUoKXK3
999991  232596  293850  741881  JD0SVS5uob  kWeP8DEw19rwxVN3XBBcskibMRGxfoToNO9RDeCT
999992  532752  733958  222003  9X4PopnltN  dKhsdKFK1EfAATBFsB5hjKZzQWERxzxGEQZWAvSe
999993  308623  717897  703895  Fg0nuq63hA  kHzRecZoaG5tAnLbtlq1hqtfd2l5oEMFbJp4NjhC
999994  841670  528518   70745  vKQDiAzZNf  M5wdoUNfkdKX2VKQEArvBLYl5lnTNShjDLwnb8VE
999995  986988  599807  901853  r8iHjo39NH  72CfzCycAGoYMocbw3EbUbrV4LRowFjSDoDeYfT5
999996  384064  429184  203230  EJy0mTAmdQ  1jfUQCj2SLIktVqIRHfYQW2QYfpvhcWCbRLO5wqL
999997  967270  565677  146418  KWp2nH1MbM  hzhn880cuEpjFhd5bd7vpgsjjRNgaViANW9FHwrf
999998  130864  863893    5614  L28QGa22f1  zfg8mBidk8NTa3LKO4rg31Z6K4ljK50q5tHHq8Fh
999999  528532  276698  553870  0XRJwqBAWX  0EzNcDkGUFklcbKELtcr36zPCMu9lSaIDcmm0kUX

[1000000 rows x 5 columns]