您好我有一个DataFrame -
ID X Y
1 1234 284
1 1396 179
2 8620 178
3 1620 191
3 8820 828
我希望根据ID将此DataFrame拆分为多个DataFrame。因此,对于此示例,将有3个DataFrame。实现它的一种方法是在循环中运行过滤器操作。但是,我想知道是否可以以更有效的方式完成。
答案 0 :(得分:2)
#initialize spark dataframe
df = sc.parallelize([ (1,1234,282),(1,1396,179),(2,8620,178),(3,1620,191),(3,8820,828) ] ).toDF(["ID","X","Y"])
#get the list of unique ID values ; there's probably a better way to do this, but this was quick and easy
listids = [x.asDict().values()[0] for x in df.select("ID").distinct().collect()]
#create list of dataframes by IDs
dfArray = [df.where(df.ID == x) for x in listids]
dfArray[0].show()
+---+----+---+
| ID| X| Y|
+---+----+---+
| 1|1234|282|
| 1|1396|179|
+---+----+---+
dfArray[1].show()
+---+----+---+
| ID| X| Y|
+---+----+---+
| 2|8620|178|
+---+----+---+
dfArray[2].show()
+---+----+---+
| ID| X| Y|
+---+----+---+
| 3|1620|191|
| 3|8820|828|
+---+----+---+