获取具有不同状态的详细iOS CPU使用情况

时间:2017-05-09 09:43:23

标签: ios objective-c swift cpu-usage

如何在IOS中以不同状态获取CPU使用情况,例如

1.Idle

2.运行用户空间

3.运行内核/系统

诸如this之类的CPU使用示例仅提供如下所示的总CPU使用率。如何检查使用中的不同状态? 有什么帮助吗?

一般用法示例主要如下所示:

- (NSString *)cpuUsage
{
   kern_return_t kr;
   task_info_data_t tinfo;
   mach_msg_type_number_t task_info_count;

   task_info_count = TASK_INFO_MAX;
   kr = task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t)tinfo, &task_info_count);
   if (kr != KERN_SUCCESS)
   {
     return @"NA";
   }

   task_basic_info_t      basic_info;
   thread_array_t         thread_list;
   mach_msg_type_number_t thread_count;
   thread_info_data_t     thinfo;
   mach_msg_type_number_t thread_info_count;
   thread_basic_info_t basic_info_th;
   uint32_t stat_thread = 0; // Mach threads

   basic_info = (task_basic_info_t)tinfo;

   // get threads in the task
   kr = task_threads(mach_task_self(), &thread_list, &thread_count);
   if (kr != KERN_SUCCESS)
   {
      return @"NA";
   }
   if (thread_count > 0)
    stat_thread += thread_count;

   long tot_sec = 0;
   long tot_usec = 0;
   float tot_cpu = 0;
   int j;

   for (j = 0; j < thread_count; j++)
   {
      thread_info_count = THREAD_INFO_MAX;
      kr = thread_info(thread_list[j], THREAD_BASIC_INFO,
                     (thread_info_t)thinfo, &thread_info_count);
      if (kr != KERN_SUCCESS)
      {
          return nil;
      }

      basic_info_th = (thread_basic_info_t)thinfo;

      if (!(basic_info_th->flags & TH_FLAGS_IDLE))
      {
          //This is 0
          tot_sec = tot_sec + basic_info_th->user_time.seconds + basic_info_th->system_time.seconds;

          //This is 0
          tot_usec = tot_usec + basic_info_th->system_time.microseconds + basic_info_th->system_time.microseconds;

          //This is total
          tot_cpu = tot_cpu + basic_info_th->cpu_usage / (float)TH_USAGE_SCALE * 100.0;
      }

  } // for each thread

  kr = vm_deallocate(mach_task_self(), (vm_offset_t)thread_list, thread_count * sizeof(thread_t));
  assert(kr == KERN_SUCCESS);

  return [NSString stringWithFormat:@"%.2f",tot_cpu];
}

修改

我确实尝试过提到的示例。here但是内核/系统读取总是在实际设备上返回0。 这是对的吗?我不确定。

1 个答案:

答案 0 :(得分:1)

试试这个Objective-C类;

获取当前应用CPU使用率SystemMonitor.cpuUsage()

获取总CPU使用率SystemMonitor.usage()

SystemMonitor.h

#ifndef SystemMonitor_h
#define SystemMonitor_h
#import <Foundation/Foundation.h>
#import <UIKit/UIKit.h>

typedef struct {
    unsigned int system;
    unsigned int user;
    unsigned int nice;
    unsigned int idle;
} CPUUsage;

@interface SystemMonitor: NSObject
+ (CPUUsage)cpuUsage;
+ (CGFloat)appCpuUsage;
@end
#endif /* SystemMonitor_h */

SystemMonitor.m

#import <Foundation/Foundation.h>
#import "SystemMonitor.h"
#import <sys/sysctl.h>
#import <mach/mach.h>
#import <sys/stat.h>


@implementation SystemMonitor


+ (CPUUsage)cpuUsage {
    kern_return_t kr;
    mach_msg_type_number_t count;
    static host_cpu_load_info_data_t previous_info = {0, 0, 0, 0};
    host_cpu_load_info_data_t info;

    CPUUsage usage = {0, 0, 0, 1};
    count = HOST_CPU_LOAD_INFO_COUNT;

    kr = host_statistics(mach_host_self(), HOST_CPU_LOAD_INFO, (host_info_t)&info, &count);
    if (kr != KERN_SUCCESS) {
        return usage;
    }

    natural_t user   = info.cpu_ticks[CPU_STATE_USER] - previous_info.cpu_ticks[CPU_STATE_USER];
    natural_t nice   = info.cpu_ticks[CPU_STATE_NICE] - previous_info.cpu_ticks[CPU_STATE_NICE];
    natural_t system = info.cpu_ticks[CPU_STATE_SYSTEM] - previous_info.cpu_ticks[CPU_STATE_SYSTEM];
    natural_t idle   = info.cpu_ticks[CPU_STATE_IDLE] - previous_info.cpu_ticks[CPU_STATE_IDLE];
    //natural_t total  = user + nice + system + idle;
    previous_info    = info;

    usage.user = user;
    usage.system = system;
    usage.nice = nice;
    usage.idle = idle;
    //return (user + nice + system) * 100.0 / total;
    return usage;
}

static NSUInteger const kMaxPercent = 100;
+ (CGFloat)appCpuUsage {
    kern_return_t kr;
    task_info_data_t tinfo;
    mach_msg_type_number_t task_info_count;

    task_info_count = TASK_INFO_MAX;
    kr = task_info(mach_task_self(), MACH_TASK_BASIC_INFO, (task_info_t)tinfo, &task_info_count);
    if (kr != KERN_SUCCESS) {
        return -1;
    }

    thread_array_t         thread_list;
    mach_msg_type_number_t thread_count;

    thread_info_data_t     thinfo;
    mach_msg_type_number_t thread_info_count;

    thread_basic_info_t basic_info_th;

    // get threads in the task
    kr = task_threads(mach_task_self(), &thread_list, &thread_count);
    if (kr != KERN_SUCCESS) {
        return -1;
    }

    long total_time     = 0;
    long total_userTime = 0;
    CGFloat total_cpu   = 0;
    int j;

    // for each thread
    for (j = 0; j < (int)thread_count; j++) {
        thread_info_count = THREAD_INFO_MAX;
        kr = thread_info(thread_list[j], THREAD_BASIC_INFO,
                         (thread_info_t)thinfo, &thread_info_count);
        if (kr != KERN_SUCCESS) {
            return -1;
        }

        basic_info_th = (thread_basic_info_t)thinfo;

        if (!(basic_info_th->flags & TH_FLAGS_IDLE)) {
            total_time     = total_time + basic_info_th->user_time.seconds + basic_info_th->system_time.seconds;
            total_userTime = total_userTime + basic_info_th->user_time.microseconds + basic_info_th->system_time.microseconds;
            total_cpu      = total_cpu + basic_info_th->cpu_usage / (float)TH_USAGE_SCALE * kMaxPercent;
        }
    }

    kr = vm_deallocate(mach_task_self(), (vm_offset_t)thread_list, thread_count * sizeof(thread_t));
    assert(kr == KERN_SUCCESS);

    return total_cpu;
}

@end