我从一本书中学习了这个Fortran程序,该书基本上运行良好,以适应某些数据的测试并提供输出。代码及其实际结果/输出如下:
real*4 x(50),xc(50,20),omega(50)
integer ir(50)
real*8 xx
c This code tests goodness of fit.
n=47
c The method of Bak, Nielsen, and Madsen is used.
data (x(i), i=1,47)/ 18, 22, 26, 16, 19, 21, 18, 22,
* 25, 31, 30, 34, 31, 25, 21, 24, 21, 28, 24, 26, 32,
* 33, 36, 39, 32, 33, 42, 44, 43, 48, 50, 56, 57, 59,
* 51, 49, 49, 57, 69, 72, 75, 76, 78, 73, 73, 75, 86/
do 999 icase=1,2
c Parameter icase =1 or 2 denotes SDE model 1 or 2.
xx=102038.
m=8
h=1.0
do 10 j=1,m+1
10 omega(j)=0.0
kk=4
akk=kk
h=h/akk
do 202 i=2,n
xs=x(i-1)
xe=x(i)
do 202 j=1,m
xk=xs
do 252 k=1,kk
call functs(icase,xk,f,g)
call random(xx,rand1,rand2)
252 xk=xk+h*f+sqrt(h)*g*rand1
xc(i,j)=xk
202 continue
do 402 i=2,n
irr=1
do 302 j=1,m
xe=x(i)
xcalc=xc(i,j)
if(xe.gt.xcalc) irr=irr+1
302 continue
402 ir(i)=irr
do 502 i=2,n
irr=ir(i)
omega(irr)=omega(irr)+1.0
502 continue
chi2=0.0
an=n
am=m
hlp=(an-1.0)/(am+1.0)
do 602 j=1,m+1
602 chi2=chi2+(omega(j)-hlp)**2/hlp
write(6,100) icase,chi2
100 format(5x,i7,5x,f9.2)
999 continue
stop
end
subroutine functs(icase,x,f,g)
th1=3510.0
th2=13500.0
f=th1/(x*x)
g=th2/(x*x)
if(icase.eq.1) goto 17
th1=.0361
th2=.6090
f=th1*x
g=sqrt(th2*x)
17 continue
return
end
subroutine random(xx,rand1,rand2)
real*8 xx,a,b,d,rng(2)
a=16807.
ib=2147483647
b=ib
do 55 i=1,2
id=a*xx/b
d=id
xx=a*xx-d*b
55 rng(i)=xx/b
pi=3.141592654
u1=rng(1)
u2=rng(2)
hlp=sqrt(-2.0*alog(u1))
rand1=hlp*cos(pi*2.0*u2)
rand2=hlp*sin(pi*2.0*u2)
return
end
该计划的输出是:
1 18.57
2 4.09
然而,即使在使用许多在线Fortran编译器之后,我也没有得到这些结果。它给出了非标准类型声明等错误。
我需要帮助以获得与上述相同的输出。
答案 0 :(得分:3)
代码是使用(旧)Fortran 77样式编写的,并添加了一些常用扩展。由于它使用所谓的固定格式,因此源代码使用的列对于获得正确的代码至关重要。特别是对于这种情况:
正确缩进代码允许它在GNU gfortran(使用v.4.8.2测试)和Intel ifort(使用15.0.2版测试)上运行。要通知编译器您要为大多数编译器采用固定格式,您只需使用.f扩展名作为源文件。否则你有合适的编译器选项。对于gfortran,编译指定-ffixed-form。下面提供了(最小)缩进代码。
real*4 x(50),xc(50,20),omega(50)
integer ir(50)
real*8 xx
c This code tests goodness of fit.
n=47
c The method of Bak, Nielsen, and Madsen is used.
data (x(i), i=1,47)/ 18, 22, 26, 16, 19, 21, 18, 22,
* 25, 31, 30, 34, 31, 25, 21, 24, 21, 28, 24, 26, 32,
* 33, 36, 39, 32, 33, 42, 44, 43, 48, 50, 56, 57, 59,
* 51, 49, 49, 57, 69, 72, 75, 76, 78, 73, 73, 75, 86/
do 999 icase=1,2
c Parameter icase =1 or 2 denotes SDE model 1 or 2.
xx=102038.
m=8
h=1.0
do 10 j=1,m+1
10 omega(j)=0.0
kk=4
akk=kk
h=h/akk
do 202 i=2,n
xs=x(i-1)
xe=x(i)
do 202 j=1,m
xk=xs
do 252 k=1,kk
call functs(icase,xk,f,g)
call random(xx,rand1,rand2)
252 xk=xk+h*f+sqrt(h)*g*rand1
xc(i,j)=xk
202 continue
do 402 i=2,n
irr=1
do 302 j=1,m
xe=x(i)
xcalc=xc(i,j)
if(xe.gt.xcalc) irr=irr+1
302 continue
402 ir(i)=irr
do 502 i=2,n
irr=ir(i)
omega(irr)=omega(irr)+1.0
502 continue
chi2=0.0
an=n
am=m
hlp=(an-1.0)/(am+1.0)
do 602 j=1,m+1
602 chi2=chi2+(omega(j)-hlp)**2/hlp
write(6,100) icase,chi2
100 format(5x,i7,5x,f9.2)
999 continue
stop
end
subroutine functs(icase,x,f,g)
th1=3510.0
th2=13500.0
f=th1/(x*x)
g=th2/(x*x)
if(icase.eq.1) goto 17
th1=.0361
th2=.6090
f=th1*x
g=sqrt(th2*x)
17 continue
return
end
subroutine random(xx,rand1,rand2)
real*8 xx,a,b,d,rng(2)
a=16807.
ib=2147483647
b=ib
do 55 i=1,2
id=a*xx/b
d=id
xx=a*xx-d*b
55 rng(i)=xx/b
pi=3.141592654
u1=rng(1)
u2=rng(2)
hlp=sqrt(-2.0*alog(u1))
rand1=hlp*cos(pi*2.0*u2)
rand2=hlp*sin(pi*2.0*u2)
return
end
如果要使用在线资源进行编译,请确保正确复制粘贴代码(使用正确的缩进)并使用固定表单的选项。例如,在下面的shell中使用https://www.tutorialspoint.com/compile_fortran_online.php编译输入:gfortran -ffixed-form *.f95 -o main
。
由于Fortran 77风格现在很老了,如果你要开始一个新代码我个人建议转向自由格式源代码并使用更新的Fortran功能。下面给出了使用现代风格重写代码的可能性:
module my_kinds
integer, parameter :: sp = selected_real_kind(9)
integer, parameter :: dp = selected_real_kind(18)
end module my_kinds
program test_from_book
use my_kinds
real(sp) :: x(50),xc(50,20),omega(50)
integer :: ir(50)
real(dp) :: xx
! This code tests goodness of fit.
n=47
! The method of Bak, Nielsen, and Madsen is used.
x = [ 18, 22, 26, 16, 19, 21, 18, 22, &
25, 31, 30, 34, 31, 25, 21, 24, 21, 28, 24, 26, 32, &
33, 36, 39, 32, 33, 42, 44, 43, 48, 50, 56, 57, 59, &
51, 49, 49, 57, 69, 72, 75, 76, 78, 73, 73, 75, 86, &
0 , 0, 0]
loop_999: do icase=1,2
! Parameter icase =1 or 2 denotes SDE model 1 or 2.
xx=102038.
m=8
h=1.0
do j=1,m+1
omega(j)=0.0
enddo
kk=4
akk=kk
h=h/akk
loop_202: do i=2,n
xs=x(i-1)
xe=x(i)
do j=1,m
xk=xs
do k=1,kk
call functs(icase,xk,f,g)
call random(xx,rand1,rand2)
xk=xk+h*f+sqrt(h)*g*rand1
enddo
xc(i,j)=xk
enddo
enddo loop_202
loop_402: do i=2,n
irr=1
do j=1,m
xe=x(i)
xcalc=xc(i,j)
if(xe.gt.xcalc) irr=irr+1
enddo
ir(i)=irr
enddo loop_402
do i=2,n
irr=ir(i)
omega(irr)=omega(irr)+1.0
enddo
chi2=0.0
an=n
am=m
hlp=(an-1.0)/(am+1.0)
do j=1,m+1
chi2=chi2+(omega(j)-hlp)**2/hlp
enddo
write(6,100) icase,chi2
100 format(5x,i7,5x,f9.2)
enddo loop_999
stop
end
subroutine functs(icase,x,f,g)
th1=3510.0
th2=13500.0
f=th1/(x*x)
g=th2/(x*x)
if(icase.ne.1) then
th1=.0361
th2=.6090
f=th1*x
g=sqrt(th2*x)
endif
end
subroutine random(xx,rand1,rand2)
use my_kinds
real(dp) :: xx,a,b,d,rng(2)
a=16807.
ib=2147483647
b=ib
do i=1,2
id=a*xx/b
d=id
xx=a*xx-d*b
rng(i)=xx/b
enddo
pi=3.141592654
u1=rng(1)
u2=rng(2)
hlp=sqrt(-2.0*alog(u1))
rand1=hlp*cos(pi*2.0*u2)
rand2=hlp*sin(pi*2.0*u2)
end