我有words
org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[11] at map
看起来像
Array(Array(cyber crimes, cyber security, review, india, instances, state, issue), Array(civil society, instances, frequency))
现在,在对上述内容执行flatMap
和distinct
以获取RDD中的所有不同字词后,我得到了
scala> val uniquewords = words.flatMap(_.distinct)
res17: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[20] at flatMap at <console>:30
scala> uniquewords.take(10)
res18: Array[String] = Array(cyber crimes, cyber security, review, india, instances, state, issue, civil society, frequency)
现在,我正在执行zipWithIndex
我正在获得错误
scala> uniquewords.zipWithIndex
17/05/07 09:40:09 ERROR Executor: Exception in task 0.0 in stage 14.0 (TID 17)
java.lang.NullPointerException
at $line16.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$1.apply(<console>:27)
at $line16.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$1.apply(<console>:27)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at org.apache.spark.util.Utils$.getIteratorSize(Utils.scala:1760)
at org.apache.spark.rdd.ZippedWithIndexRDD$$anonfun$2.apply(ZippedWithIndexRDD.scala:52)
at org.apache.spark.rdd.ZippedWithIndexRDD$$anonfun$2.apply(ZippedWithIndexRDD.scala:52)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
17/05/07 09:40:09 WARN TaskSetManager: Lost task 0.0 in stage 14.0 (TID 17, localhost, executor driver): java.lang.NullPointerException
at $line16.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$1.apply(<console>:27)
at $line16.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$1.apply(<console>:27)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at org.apache.spark.util.Utils$.getIteratorSize(Utils.scala:1760)
at org.apache.spark.rdd.ZippedWithIndexRDD$$anonfun$2.apply(ZippedWithIndexRDD.scala:52)
at org.apache.spark.rdd.ZippedWithIndexRDD$$anonfun$2.apply(ZippedWithIndexRDD.scala:52)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
17/05/07 09:40:09 ERROR TaskSetManager: Task 0 in stage 14.0 failed 1 times; aborting job
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 14.0 failed 1 times, most recent failure: Lost task 0.0 in stage 14.0 (TID 17, localhost, executor driver): java.lang.NullPointerException
at $anonfun$1.apply(<console>:27)
at $anonfun$1.apply(<console>:27)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at org.apache.spark.util.Utils$.getIteratorSize(Utils.scala:1760)
at org.apache.spark.rdd.ZippedWithIndexRDD$$anonfun$2.apply(ZippedWithIndexRDD.scala:52)
at org.apache.spark.rdd.ZippedWithIndexRDD$$anonfun$2.apply(ZippedWithIndexRDD.scala:52)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
at org.apache.spark.rdd.ZippedWithIndexRDD.<init>(ZippedWithIndexRDD.scala:50)
at org.apache.spark.rdd.RDD$$anonfun$zipWithIndex$1.apply(RDD.scala:1293)
at org.apache.spark.rdd.RDD$$anonfun$zipWithIndex$1.apply(RDD.scala:1293)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.zipWithIndex(RDD.scala:1292)
... 48 elided
Caused by: java.lang.NullPointerException
at $anonfun$1.apply(<console>:27)
at $anonfun$1.apply(<console>:27)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at org.apache.spark.util.Utils$.getIteratorSize(Utils.scala:1760)
at org.apache.spark.rdd.ZippedWithIndexRDD$$anonfun$2.apply(ZippedWithIndexRDD.scala:52)
at org.apache.spark.rdd.ZippedWithIndexRDD$$anonfun$2.apply(ZippedWithIndexRDD.scala:52)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
我的问题陈述与this几乎相似,但我认为解决方案并不适用于我。是否有不同的方法来处理MapPartitionsRDD
?
答案 0 :(得分:1)
MapPartitionsRDD
来自哪里,没有任何问题
val rdd = sc.parallelize(Array[Array[String]](Array[String]("cyber", "india", "fourteen"), Array[String]("crime", "india", "twelve")))
rdd.flatMap(_.distinct).zipWithIndex.collect
阵列((网络,0),(印度,1),(十四,二),(犯罪,3),(印度,4),(十二,五))
所以这里必须有别的东西在玩。你能创建一个重现错误的最小工作示例吗?我猜你的RDD中有一些你应该过滤掉的空行,遇到类似错误的情况总是如此。那些空行正在产生NullPointerException
(我认为),可能是试图在它们上面调用.distinct
。该错误是由anon
函数生成的,这意味着它是您传递给map
或flatMap
的某些匿名函数 - 很难完全解释为&#{1}} 39;不是一个完整的例子。
仔细检查您的数据提取并验证RDD是否包含您认为包含的内容。