使用R将字符串拆分为多个可变长度的列

时间:2017-05-05 15:28:19

标签: r data.table

我正在寻找更快的方法来实现以下目标,我需要将包含字符串的data.table对象的列拆分为单独的列。字符串的格式为“name1 = value1; name2 = value2;”。字符串可以拆分为可变数量的列,在这种情况下,这些值需要用NA填充。例如,我有这个:

library(data.table)
dt <- data.table("foo"=c("name=john;id=1234;last=smith", "name=greg;id=5678", "last=picard", "last=jones;number=1234567890"))

我想要这个:

name id last number john 1234 smith NA greg 5678 NA NA NA NA picard NA NA NA jones 1234567890

这会有效,但考虑到要解析的数据量很慢,我想知道是否有更好的方法:

x <- strsplit(as.character(dt$foo), ";|=")
a <- function(x){
     name <- x[seq(1, length(x), 2)]
     value <- x[seq(2, length(x), 2)]
     tmp <- transpose(as.data.table(value))
     names(tmp) <- name
     return(tmp)
  }
x <- lapply(x, a)
x <- rbindlist(x, fill=TRUE)

1 个答案:

答案 0 :(得分:3)

我们可以尝试:

# split into different fields for each row
res <- lapply(strsplit(dt$foo, ';'), function(x){
    # split the the fields into two vectors of field names and field values
    res <- tstrsplit(x, '=')
    # make a list of field values with the field names as names of the list 
    setNames(as.list(res[[2]]), res[[1]])
})

rbindlist(res, fill = T)
#    name   id   last     number
# 1: john 1234  smith         NA
# 2: greg 5678     NA         NA
# 3:   NA   NA picard         NA
# 4:   NA   NA  jones 1234567890

dplyr::bind_rows(res)

# # A tibble: 4 × 4
#    name    id   last     number
#   <chr> <chr>  <chr>      <chr>
# 1  john  1234  smith       <NA>
# 2  greg  5678   <NA>       <NA>
# 3  <NA>  <NA> picard       <NA>
# 4  <NA>  <NA>  jones 1234567890

根据David Arenburg的评论,我们可以通过向fixed = TRUE添加strsplit来提高速度。我对这些数据进行了简短的基准测试,添加fixed = TRUE会将速度提高一倍左右。

library(microbenchmark)

dt <- dt[sample.int(nrow(dt), 100, replace = T)]

microbenchmark(
    noFix = {
        res <- lapply(strsplit(dt$foo, ';'), function(x){
            res <- tstrsplit(x, '=')
            setNames(as.list(res[[2]]), res[[1]])
        })
    },
    Fixed = {
        res <- lapply(strsplit(dt$foo, ';', fixed = TRUE), function(x){
            res <- tstrsplit(x, '=', fixed = TRUE)
            setNames(as.list(res[[2]]), res[[1]])
        })
    },
    times = 1000
)
# Unit: milliseconds
#  expr      min       lq     mean   median       uq       max neval
# noFix 1.921947 1.999386 2.212511 2.064997 2.218706 11.290072  1000
# Fixed 1.026753 1.088712 1.226519 1.131899 1.219558  4.490796  1000