为Spark集群和Cassandra设置和配置JanusGraph

时间:2017-05-05 12:55:22

标签: hadoop apache-spark cassandra titan janusgraph

我在一台机器上运行带有Spark(1.6.1)的JanusGraph(0.1.0)。 我完成了here所述的配置。 使用SparkGraphComputer访问gremlin-console上的图形时,它始终为空。我在日志文件中找不到任何错误,它只是一个空图。

有人使用JanusGraph和Spark共享他的配置和属性吗?

使用JanusGraph,我得到预期的输出:

gremlin> graph=JanusGraphFactory.open('conf/test.properties')
==>standardjanusgraph[cassandrathrift:[127.0.0.1]]
gremlin> g=graph.traversal()
==>graphtraversalsource[standardjanusgraph[cassandrathrift:[127.0.0.1]], standard]
gremlin> g.V().count()
14:26:10 WARN  org.janusgraph.graphdb.transaction.StandardJanusGraphTx  - Query requires iterating over all vertices [()]. For better performance, use indexes
==>1000001
gremlin>

使用HadoopGraph和Spark作为GraphComputer,图表为空:

gremlin> graph=GraphFactory.open('conf/test.properties')
==>hadoopgraph[cassandrainputformat->gryooutputformat]
gremlin> g=graph.traversal().withComputer(SparkGraphComputer)
==>graphtraversalsource[hadoopgraph[cassandrainputformat->gryooutputformat], sparkgraphcomputer]
gremlin> g.V().count()
            ==>0==============================================>   (14 + 1) / 15]

我的conf / test.properties:

#
# Hadoop Graph Configuration
#
gremlin.graph=org.apache.tinkerpop.gremlin.hadoop.structure.HadoopGraph
gremlin.hadoop.graphInputFormat=org.janusgraph.hadoop.formats.cassandra.CassandraInputFormat
gremlin.hadoop.graphOutputFormat=org.apache.tinkerpop.gremlin.hadoop.structure.io.gryo.GryoOutputFormat
gremlin.hadoop.memoryOutputFormat=org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat
gremlin.hadoop.memoryOutputFormat=org.apache.tinkerpop.gremlin.hadoop.structure.io.gryo.GryoOutputFormat

gremlin.hadoop.deriveMemory=false
gremlin.hadoop.jarsInDistributedCache=true
gremlin.hadoop.inputLocation=none
gremlin.hadoop.outputLocation=output

#
# Titan Cassandra InputFormat configuration
#
janusgraphmr.ioformat.conf.storage.backend=cassandrathrift
janusgraphmr.ioformat.conf.storage.hostname=127.0.0.1
janusgraphmr.ioformat.conf.storage.keyspace=janusgraph
storage.backend=cassandrathrift
storage.hostname=127.0.0.1
storage.keyspace=janusgraph

#
# Apache Cassandra InputFormat configuration
#
cassandra.input.partitioner.class=org.apache.cassandra.dht.Murmur3Partitioner
cassandra.input.keyspace=janusgraph
cassandra.input.predicate=0c00020b0001000000000b000200000000020003000800047fffffff0000
cassandra.input.columnfamily=edgestore
cassandra.range.batch.size=2147483647

#
# SparkGraphComputer Configuration
#
spark.master=spark://127.0.0.1:7077
spark.serializer=org.apache.spark.serializer.KryoSerializer
spark.executor.memory=100g

gremlin.spark.persistContext=true
gremlin.hadoop.defaultGraphComputer=org.apache.tinkerpop.gremlin.spark.process.computer.SparkGraphComputer

HDFS似乎按照here描述的正确配置:

gremlin> hdfs
==>storage[DFS[DFSClient[clientName=DFSClient_NONMAPREDUCE_178390072_1, ugi=cassandra (auth:SIMPLE)]]]

1 个答案:

答案 0 :(得分:5)

尝试修复这些属性:

janusgraphmr.ioformat.conf.storage.keyspace=janusgraph
storage.keyspace=janusgraph

替换为:

janusgraphmr.ioformat.conf.storage.cassandra.keyspace=janusgraph
storage.cassandra.keyspace=janusgraph

默认密钥空间名称为janusgraph,因此尽管属性名称存在错误,但我认为除非您使用不同的密钥空间名称加载数据,否则您不会发现此问题。

后一种属性在Configuration Reference中描述。另外,请密切关注此open issue以改进Hadoop-Graph使用的文档。