我遇到嵌套列分组问题
我的应用程序scala版本是2.11.7,这是我的sbt依赖
libraryDependencies ++= {
val akkaVersion = "2.4.10"
val sparkVersion = "2.1.1"
Seq(
"com.typesafe.akka" %% "akka-actor" % akkaVersion,
"com.typesafe" % "config" % "1.3.0" ,
"org.apache.spark" %% "spark-core" % sparkVersion,
"org.apache.spark" %% "spark-sql" % sparkVersion,
"com.typesafe.akka" %% "akka-slf4j" % akkaVersion,
"org.apache.spark" %% "spark-streaming" % sparkVersion
)
}
这是我的样本数据(1行)
124567893|254887452|52448796|2017-02-22 00:00:02|1|4|0014551233548|N|0|0|2||2|44|4||1|1|||2|-1||1|USD|||1457784114521||7|[1~26.927900~0.390200][4~0.000000~0.000000][8~0.000000~0.000000][9~0.000000~0.000000][11~0.000000~0.000000][12~0.000000~0.000000][13~0.000000~0.000000][71~0.000000~0.000000][91~0.000000~0.000000][111~0.000000~0.000000][131~0.000000~0.000000][251~0.000000~0.000000][311~0.000000~0.000000][331~0.000000~0.000000][451~0.000000~0.000000][3~0.000000~0.000000]|[323~4517.702200~0.390200][384~5310.000000~0.000000][443~4296.000000~0.000000][463~0.000000~0.000000][1024~10.535400~0.390200][1343~57.980000~0.000000][783~0.000000~0.000000][303~0.000000~0.000000][403~10.535400~0.390200][523~13790.000000~0.000000][1143~0.000000~0.000000][763~0.000000~0.000000]|
这是我的映射器
case class SampleMap(
id: Long, //1
a_id_1: Long, //2
b_id_2: Long, //3
date_time: String, //4
subscriber_type: Int, //5
x_type: Int, //6
sub_id_2: String, //7
account_type: Int, //11
master_sub_id: String, //12
application_id: Int, //13
sup_type_id: Int, //14
unit_type_id: Int, //15
usage_amount: Long, //16
type_of_charge: String, //17
identity_id: Int, //18
group_id: String, //19
charge_code: String, //20
content_type: Int, //21
fund_usage_type: Int, //24
msc_id: String, //28
circle_id: Int, //29
sp_id: Int, //30
balance: List[(Int, Double, Double)], //31
z_info: List[(Int, Double, Double] //33
)
我已经编写了代码来过滤和映射
private def mappingSparkLoadedSMSData(sparkRdd:Dataset[String]): Dataset[SMSMap] = {
import SparkFactory.spark.implicits._
sparkRdd
.map(_.split("\\|",-1))
.filter(_.length==33) //adding last empty string
.map(
data =>
SMSMap(
{if(data(0).nonEmpty) data(0).toLong else 0 },
{if(data(1).nonEmpty) data(1).toLong else 0 },
{if(data(2).nonEmpty) data(2).toLong else 0 },
data(3),
{if(data(4).nonEmpty) data(4).toInt else 0 },
{if(data(5).nonEmpty) data(5).toInt else 0 },
data(6),
{if(data(10).nonEmpty) data(10).toInt else 0 },
data(11),
{if(data(12).nonEmpty) data(12).toInt else 0 },
{if(data(13).nonEmpty) data(13).toInt else 0 },
{if(data(14).nonEmpty) data(14).toInt else 0 },
{if(data(15).nonEmpty) data(15).toLong else 0 },
data(16),
{if(data(17).nonEmpty) data(17).toInt else 0 },
data(18),
data(19),
{if(data(20).nonEmpty) data(20).toInt else 0 },
{if(data(23).nonEmpty) data(23).toInt else 0 },
data(27),
{if(data(28).nonEmpty) data(28).toInt else 0 },
{if(data(29).nonEmpty) data(29).toInt else 0 },
data(30)
.drop(1)
.dropRight(1)
.split("\\]\\[")
.map(_.split('~'))
.filter(data => data.length > 2 && data(2).nonEmpty && data(2).toDouble != 0)
.map(data => (data(0).toInt, data(2).toDouble, data(2).toDouble))
.toList,
data(31)
.drop(1)
.dropRight(1)
.split("\\]\\[")
.map(_.split('~'))
.filter(data => data.length > 2 && data(2).nonEmpty && data(2).toDouble != 0)
.map(data => (data(0).toInt, data(2).toDouble, data(2).toDouble))
.toList
)
)
}
然后我创建临时视图并尝试像这样查询
formattedRDD.createOrReplaceTempView("temp_table") //formattedRDD is a val that stored after Mapping
spark.sql(
s" select balance from temp_table group by balance"
).collectAsList()
当你看着 y_info:列出[(Int,Double,Double)],// 31
第一列是bal_id(Int),第二列是change_balance(Double),第三列是累积(Double),它有多个集合
现在我想通过bal_id进行分组并得到change_balance的总和,但我不能这样做(当然不能这样做,因为每个都是值)
我有想法将余额(余额:列表[(Int,Double,Double)],// 31)分成不同的数据集/表格以及映射和分组但是要分开我们需要添加auto_increment_id或任何用于映射目的的数据集/表的唯一行标识符(请注意,id可以是重复的)
我真的很困惑。任何人请帮助我。提前致谢
答案 0 :(得分:1)
如果您将余额列分为三个不同的列,您可以轻松地groupBy
bal_id
和sum
change_balance
case class SampleMap(
id: Long, //1
a_id_1: Long, //2
b_id_2: Long, //3
date_time: String, //4
subscriber_type: Int, //5
x_type: Int, //6
sub_id_2: String, //7
account_type: Int, //11
master_sub_id: String, //12
application_id: Int, //13
sup_type_id: Int, //14
unit_type_id: Int, //15
usage_amount: Long, //16
type_of_charge: String, //17
identity_id: Int, //18
group_id: String, //19
charge_code: String, //20
content_type: Int, //21
fund_usage_type: Int, //24
msc_id: String, //28
circle_id: Int, //29
sp_id: Int, //30
balance: List[(Int, Double, Double)], //31
bal_id: Int, //added by Ramesh
change_balance: Double, //added by Ramesh
accumulated: Double, //added by Ramesh
z_info: List[(Int, Double, Double)] //33
)
。
您可以在初始阶段创建这三个单独的列。
根据我从您的问题中理解的解决方案,这是解决方案:
您需要在案例类中包含三个列名称:
val formattedRDD = sparkRdd.map(_.split("\\|",-1))
.filter(_.length==33) //adding last empty string
.map( data => {
val balance = Try(data(30)
.drop(1)
.dropRight(1)
.split("\\]\\[")
.map(_.split('~'))
.filter(data => data.length > 2 && data(2).nonEmpty && data(2).toDouble != 0)
.map(data => (data(0).toInt, data(2).toDouble, data(2).toDouble))
.toList) getOrElse List((0, 0.0, 0.0))
SampleMap(
Try(data(0).toLong) getOrElse 0,
Try(data(1).toLong) getOrElse 0,
Try(data(2).toLong) getOrElse 0,
Try(data(3).toString) getOrElse "",
Try(data(4).toInt) getOrElse 0,
Try(data(5).toInt) getOrElse 0,
Try(data(6).toString) getOrElse "",
0,
Try(data(11).toString) getOrElse "",
Try(data(12).toInt) getOrElse 0,
Try(data(13).toInt) getOrElse 0,
Try(data(14).toInt) getOrElse 0,
Try(data(15).toLong) getOrElse 0,
Try(data(16).toString) getOrElse "",
Try(data(17).toInt) getOrElse 0,
Try(data(18).toString) getOrElse "",
Try(data(19).toString) getOrElse "",
Try(data(20).toInt) getOrElse 0,
Try(data(23).toInt) getOrElse 0,
Try(data(27).toString) getOrElse "",
Try(data(28).toInt) getOrElse 0,
Try(data(29).toInt) getOrElse 0,
balance, //this is the 30th value i.e. balance
balance(0)._1, //this is bal_id
balance(0)._2, //this is change_balance
balance(0)._3, //this is accumulator
Try(data(31)
.drop(1)
.dropRight(1)
.split("\\]\\[")
.map(_.split('~'))
.filter(data => data.length > 2 && data(2).nonEmpty && data(2).toDouble != 0)
.map(data => (data(0).toInt, data(2).toDouble, data(2).toDouble))
.toList) getOrElse List.empty
)
}
)
.toDS()
在创建dataframe / dataset时,您必须将这三个值分隔为单独的列。以下是您的代码的改进版本:
import org.apache.spark.sql.functions.sum
formattedRDD.groupBy("bal_id").agg(sum("change_balance")).show
现在您需要做的就是调用聚合器
from keras import backend as K
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import Lambda
model = Sequential([
Dense(32, input_shape=(10, 12, 14)),
Activation('relu'),
Dense(16),
Activation('softmax'),
])
def output_of_lambda(input_shape):
return (input_shape[0], 1, input_shape[2])
def mean(x):
return K.mean(x, axis=1, keepdims=True)
model.add(Lambda(mean, output_shape=output_of_lambda))
model.summary()
# add a function to push some data through the model
func = K.function([model.inputs[0], K.learning_phase()], [model.outputs[0]]
X = np.random.randn(100, 10, 12, 14)
print(func([X, 0]))
我希望这是您所需的解决方案