我有一个大型数据框,大约有500,000个观测值(由“ID”标识)和150多个变量。有些观察只出现一次;其他人出现多次(大约10次左右)。我想“折叠”这些多个观察,以便每个唯一ID只有一行,并且第2列:150列中的所有信息都是连接在一起的。我不需要对这些观察进行任何计算,只需快速修改。
我试过了:
df.new <- group_by(df,"ID")
还有:
library(data.table)
dt = data.table(df)
dt.new <- dt[, lapply(.SD, na.omit), by = "ID"]
并且遗憾的是两者都没有奏效。任何帮助表示赞赏!
答案 0 :(得分:0)
怎么样?
df %>%
group_by(ID) %>%
summarise_each(funs(paste0(., collapse = "/")))
或reproducible ...
iris %>%
group_by(Species) %>%
summarise_each(funs(paste0(., collapse = "/")))
答案 1 :(得分:0)
我过去遇到过类似的问题,但我并没有处理相同数据的多个副本。在许多情况下只有2个实例,在某些情况下只有3个实例。以下是我的方法。希望它会有所帮助。
idx <- duplicated(df$key) | duplicated(df$key, fromLast=TRUE) # get the index of the duplicate entries. Or will help get the original value too.
dupes <- df[idx,] # get duplicated values
non_dupes <- df[!idx,] # get all non duplicated values
temp <- dupes %>% group_by(key) %>% # roll up the duplicated ones.
fill_(colnames(dupes), .direction = "down") %>%
fill_(colnames(dupes), .direction = "up") %>%
slice(1)
然后很容易合并temp
和non_dupes
。
修改强>
我强烈建议尽可能将df
过滤到最适合的人群并与您的最终目标相关,因为此过程可能需要一段时间。
答案 2 :(得分:0)
使用基本R:
df = data.frame(ID = c("a","a","b","b","b","c","d","d"),
day = c("1","2","3","4","5","6","7","8"),
year = c(2016,2017,2017,2016,2017,2016,2017,2016),
stringsAsFactors = F)
> df
ID day year
1 a 1 2016
2 a 2 2017
3 b 3 2017
4 b 4 2016
5 b 5 2017
6 c 6 2016
7 d 7 2017
8 d 8 2016
<强>执行:强>
z = aggregate(df[,2:3],
by = list(id = df$ID),
function(x){ paste0(x, collapse = "/") }
)
<强>结果:强>
> z
id day year
1 a 1/2 2016/2017
2 b 3/4/5 2017/2016/2017
3 c 6 2016
4 d 7/8 2017/2016
修改强>
如果你想避免&#34;崩溃&#34; NA做:
z = aggregate(df[,2:3],
by = list(id = df$ID),
function(x){ paste0(x[!is.na(x)],collapse = "/") })
对于数据框,如:
> df
ID day year
1 a 1 2016
2 a 2 NA
3 b 3 2017
4 b 4 2016
5 b <NA> 2017
6 c 6 2016
7 d 7 2017
8 d 8 2016
结果是:
> z
id day year
1 a 1/2 2016
2 b 3/4 2017/2016/2017
3 c 6 2016
4 d 7/8 2017/2016