我一直在尝试执行分步法,以数值方式整合Gross-Pitaevskii方程。我的代码使用python按预期执行,但为了获得性能提升,我一直在使用PyOpenCL进行调整,以便它可以在GPU上运行。我似乎已经让它工作,因为它同意我的python代码(在CPU上运行)给出的结果,但它需要比我预期的更多的时间。一个工作示例可以在下面找到:
###########################################################################
# IMPORTS NECESSARY TO RUN
from __future__ import absolute_import
from __future__ import print_function
import numpy as np
import scipy.fftpack as sp
import time as time
import pyopencl as cl
import pyopencl.array as cl_array
from reikna.cluda import ocl_api
from reikna.core import Computation, Parameter, Annotation
from reikna.fft import FFT, FFTShift
################################################################################
# DEFINE SYSTEM PARAMETERS
Lx = 1000 # length of system in x-direction
Ly = 500 # length of system in y-direction
dx = 0.4 # space step
dt = 0.1*(dx**2) # calculated timestep
Nx = int(Lx/dx) # number of points in x-direction
Ny = int(Ly/dx) # number of points in y-direction
# create frequency space coordinate grid
kx = np.array([-Nx*np.pi/Lx+2.0*np.pi*i/Lx for i in range(Nx)]) #x-wavenumbers
# ^ used when we Fourier transform
ky = np.array([-Ny*np.pi/Ly+2.0*np.pi*i/Ly for i in range(Ny)]) #x-wavenumbers
kxx, kyy = np.meshgrid(kx, ky, sparse=True) #wavenumbergrid
#################################################################################
# GENERATE TRAP POTENTIAL AND INITIAL VALUES
# define the trap potential matrix (constant)
# it has a value of 100 at the edge, and zero in the bulk
Vmat = 100.0*np.ones((Ny, Nx))
Vmat[4:-4,4:-4] = np.zeros((Ny - 8, Nx - 8))
# the initial wavefunction is zero at the edge (where the potential is nonzero)
# and 1 in the bulk (where the potential is zero).
U0 = np.zeros((Ny, Nx))
U0[4:-4,4:-4] = np.ones((Ny - 8, Nx - 8))
U = U0
###################################################################################
# PASS ARRAYS TO DEVICE
# define the PyOpenCL queue
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)
# define the Reikna thread
api = ocl_api()
thr = api.Thread(queue)
# make sure all of the data types are correct
U = U.astype(np.complex128)
Vmat = Vmat.astype(np.float64)
L_op = np.exp(-1j*dt*0.5*( kxx**2+kyy**2 )).astype(np.complex128)
idtmat = np.array(1j*dt).astype(np.complex128) # we will use the 1j below
# pass the arrays to the device, all using pyopencl, can later use w/ reikna
op_dev = cl_array.to_device(queue, U)
Vmat_dev = cl_array.to_device(queue, Vmat)
L_op_dev = cl_array.to_device(queue, L_op)
idt_dev = cl_array.to_device(queue, idtmat)
###################################################################################
# PYOPENCL KERNEL DEFINITIONS
gpe = cl.Program(ctx, """
#pragma OPENCL EXTENSION cl_khr_fp64: enable
#define PYOPENCL_DEFINE_CDOUBLE
#include <pyopencl-complex.h>
__kernel void nonlinear_operator(__global const cdouble_t *U, __global const double *Vmat, __global const cdouble_t *idt, __global cdouble_t *U_aft)
{
// get thread id numbers
int gid0 = get_global_id(0);
int gid1 = get_global_id(1);
// get the global size of the blocks
int num0 = get_global_size(0);
// the real value that gets exponentiated
__local double mag;
mag = cdouble_abs(U[gid0 + num0 * gid1]) * cdouble_abs(U[gid0 + num0 * gid1]) + Vmat[gid0 + num0 * gid1];
// exponentiate and multiply real exponent by complex wavefct
U_aft[gid0 + num0 * gid1] = cdouble_mul( cdouble_exp( cdouble_mulr(idt[0], -mag) ), U[gid0 + num0 * gid1]);
}
__kernel void laplacian_operator(__global const cdouble_t *C, __global const cdouble_t *L_op, __global cdouble_t *C_aft)
{
// get thread id numbers
int gid0 = get_global_id(0);
int gid1 = get_global_id(1);
// get the global sizes of the various blocks
int num0 = get_global_size(0);
// exponentiate and multiply real exponent by complex wavefct
C_aft[gid0 + num0 * gid1] = cdouble_mul( L_op[gid0 + num0 * gid1], C[gid0 + num0 * gid1]);
}
""").build()
###################################################################################
# REIKNA KERNEL DEFINITIONS
fft = FFT(U)
fftc = fft.compile(thr)
shift = FFTShift(U)
shiftc = shift.compile(thr)
##############################################################################
# RUNNING THE KERNELS, TIMING INCLUDED
t0 = time.time()
t_loop = []
for i in range(100):
t0_loop = time.time()
# apply the nonlinear operator
gpe.nonlinear_operator(queue, op_dev.shape, None, op_dev.data, Vmat_dev.data, idt_dev.data, op_dev.data)
# transform to frequency space
fftc(op_dev, op_dev)
# apply the shift operator to get zero frequency components to center
shiftc(op_dev, op_dev)
# apply the Laplacian operator in frequency space
gpe.laplacian_operator(queue, op_dev.shape, None, op_dev.data, L_op_dev.data, op_dev.data)
# shift back
shiftc(op_dev, op_dev)
# transform back to position space
fftc(op_dev, op_dev, inverse=True)
t_loop.append(time.time() - t0_loop)
Delta_t = time.time()-t0
# Copy the array back from the device
t_copy = time.time()
final_array = op_dev.get()
Delta_tcopy = time.time()-t_copy
##################################################################################
# COMPARE TO CALCULATION DONE ON CPU
t1 = time.time()
cpu_U = U
for i in range(100):
cpu_U=np.exp( -1j*dt*( Vmat + cpu_U*np.conjugate(cpu_U) ))*cpu_U #advance w/ N op
cpu_C=sp.fftshift(sp.fft2(cpu_U)) # transform to fourier space
cpu_C=np.exp( -1j*dt*0.5*( kxx**2+kyy**2 ) )*cpu_C # advance w/ L op
cpu_U=sp.ifft2(sp.fftshift(cpu_C)) # transform back
Delta_t1 = time.time() - t1
test = np.amax(abs(final_array-cpu_U))
if test <= 10**(-6.0):
print('Correct!')
print('GPU takes '+str(Delta_t)+' sec.')
print('Copying takes '+str(Delta_tcopy)+' sec.')
print('CPU Python takes '+str(Delta_t1)+' sec.')
else:
print('Not correct!')
print(test)
################################################################################
# WRITE OUT THE INDIVIDUAL LOOP TIMES INTO A FILE
target = open('loop_times.txt','w')
for i in range(len(t_loop)):
target.write('Loop number '+str(i)+' takes '+str(t_loop[i])+' seconds to complete.')
target.write('\n')
target.close()
如果运行此代码,则表明CPU和GPU结果一致。但是,在Tesla K40c上运行它表明GPU的运行速度比CPU快10倍。检查loop_times.txt文件,其中包含GPU上每个循环的时序信息,表明循环最初非常快。尽管有这个初始速度,但在大约20次循环之后它们变得比以前慢200倍,并且在剩余的计算中保持该速度。有没有人有任何想法为什么会这样?我最好的猜测是内存存在问题。 PyOpenCL文档here表明“......基于pyopencl.array.Array的代码很容易遇到问题[s],因为为每个中间结果分配了新的内存区域”。不过,我不肯定这是问题,因为我没有声明中间数组。
我已经在下面的Tesla K40c上运行了loop_times.txt文件,以防这有助于诊断问题。提前谢谢!
Loop number 0 takes 0.00145196914673 seconds to complete.
Loop number 1 takes 0.000530004501343 seconds to complete.
Loop number 2 takes 0.000539064407349 seconds to complete.
Loop number 3 takes 0.000540018081665 seconds to complete.
Loop number 4 takes 0.000539064407349 seconds to complete.
Loop number 5 takes 0.00052809715271 seconds to complete.
Loop number 6 takes 0.000566959381104 seconds to complete.
Loop number 7 takes 0.000523090362549 seconds to complete.
Loop number 8 takes 0.000649929046631 seconds to complete.
Loop number 9 takes 0.000531196594238 seconds to complete.
Loop number 10 takes 0.000524997711182 seconds to complete.
Loop number 11 takes 0.000524997711182 seconds to complete.
Loop number 12 takes 0.000520944595337 seconds to complete.
Loop number 13 takes 0.000530004501343 seconds to complete.
Loop number 14 takes 0.000522136688232 seconds to complete.
Loop number 15 takes 0.000525951385498 seconds to complete.
Loop number 16 takes 0.000523090362549 seconds to complete.
Loop number 17 takes 0.0888669490814 seconds to complete.
Loop number 18 takes 0.102005958557 seconds to complete.
Loop number 19 takes 0.102015972137 seconds to complete.
Loop number 20 takes 0.102032899857 seconds to complete.
Loop number 21 takes 0.101969957352 seconds to complete.
Loop number 22 takes 0.102008104324 seconds to complete.
Loop number 23 takes 0.102007865906 seconds to complete.
Loop number 24 takes 0.10200715065 seconds to complete.
Loop number 25 takes 0.102005004883 seconds to complete.
Loop number 26 takes 0.102000951767 seconds to complete.
Loop number 27 takes 0.102005004883 seconds to complete.
Loop number 28 takes 0.102003097534 seconds to complete.
Loop number 29 takes 0.101999998093 seconds to complete.
Loop number 30 takes 0.101995944977 seconds to complete.
Loop number 31 takes 0.101994037628 seconds to complete.
Loop number 32 takes 0.10199713707 seconds to complete.
Loop number 33 takes 0.101987838745 seconds to complete.
Loop number 34 takes 0.102010011673 seconds to complete.
Loop number 35 takes 0.102000951767 seconds to complete.
Loop number 36 takes 0.102009057999 seconds to complete.
Loop number 37 takes 0.102005004883 seconds to complete.
Loop number 38 takes 0.102013111115 seconds to complete.
Loop number 39 takes 0.102020025253 seconds to complete.
Loop number 40 takes 0.102008104324 seconds to complete.
Loop number 41 takes 0.102012872696 seconds to complete.
Loop number 42 takes 0.102003097534 seconds to complete.
Loop number 43 takes 0.102008104324 seconds to complete.
Loop number 44 takes 0.101997852325 seconds to complete.
Loop number 45 takes 0.102009773254 seconds to complete.
Loop number 46 takes 0.102011919022 seconds to complete.
Loop number 47 takes 0.101995944977 seconds to complete.
Loop number 48 takes 0.102001905441 seconds to complete.
Loop number 49 takes 0.102009057999 seconds to complete.
Loop number 50 takes 0.101994037628 seconds to complete.
Loop number 51 takes 0.102015018463 seconds to complete.
Loop number 52 takes 0.10200715065 seconds to complete.
Loop number 53 takes 0.102021932602 seconds to complete.
Loop number 54 takes 0.102017879486 seconds to complete.
Loop number 55 takes 0.102023124695 seconds to complete.
Loop number 56 takes 0.102003097534 seconds to complete.
Loop number 57 takes 0.102006912231 seconds to complete.
Loop number 58 takes 0.10199713707 seconds to complete.
Loop number 59 takes 0.102031946182 seconds to complete.
Loop number 60 takes 0.102022171021 seconds to complete.
Loop number 61 takes 0.102020025253 seconds to complete.
Loop number 62 takes 0.102014064789 seconds to complete.
Loop number 63 takes 0.102007865906 seconds to complete.
Loop number 64 takes 0.101998090744 seconds to complete.
Loop number 65 takes 0.102015018463 seconds to complete.
Loop number 66 takes 0.102014064789 seconds to complete.
Loop number 67 takes 0.102025032043 seconds to complete.
Loop number 68 takes 0.102019071579 seconds to complete.
Loop number 69 takes 0.102022886276 seconds to complete.
Loop number 70 takes 0.102005958557 seconds to complete.
Loop number 71 takes 0.102015972137 seconds to complete.
Loop number 72 takes 0.102024078369 seconds to complete.
Loop number 73 takes 0.101996898651 seconds to complete.
Loop number 74 takes 0.102014064789 seconds to complete.
Loop number 75 takes 0.10201215744 seconds to complete.
Loop number 76 takes 0.102012872696 seconds to complete.
Loop number 77 takes 0.101979017258 seconds to complete.
Loop number 78 takes 0.101991176605 seconds to complete.
Loop number 79 takes 0.102010011673 seconds to complete.
Loop number 80 takes 0.102005958557 seconds to complete.
Loop number 81 takes 0.102019071579 seconds to complete.
Loop number 82 takes 0.102010965347 seconds to complete.
Loop number 83 takes 0.102006912231 seconds to complete.
Loop number 84 takes 0.101999044418 seconds to complete.
Loop number 85 takes 0.102009057999 seconds to complete.
Loop number 86 takes 0.102022886276 seconds to complete.
Loop number 87 takes 0.10201382637 seconds to complete.
Loop number 88 takes 0.101995944977 seconds to complete.
Loop number 89 takes 0.102017879486 seconds to complete.
Loop number 90 takes 0.102014064789 seconds to complete.
Loop number 91 takes 0.10200214386 seconds to complete.
Loop number 92 takes 0.101999998093 seconds to complete.
Loop number 93 takes 0.102025032043 seconds to complete.
Loop number 94 takes 0.102019071579 seconds to complete.
Loop number 95 takes 0.101996898651 seconds to complete.
Loop number 96 takes 0.102020025253 seconds to complete.
Loop number 97 takes 0.101989984512 seconds to complete.
Loop number 98 takes 0.102004051208 seconds to complete.
Loop number 99 takes 0.102003097534 seconds to complete.
答案 0 :(得分:2)
由于在每次迭代结束时都没有同步队列,因此您测量的内容基本上就是排队时间。似乎在第17次迭代时,排队缓冲区已满,每个新的内核调用必须等到另一个内核完成并从队列中删除。从那一刻开始,这为您提供了大致正确的时间。当我在我的机器上运行它(带有gf755m的iMac)时,队列实际上接受了所有100次迭代的内核,然后我必须等待一分钟才能通过所有内核来完成,给我一个像
的结果GPU takes 0.055264949798583984 sec.
Copying takes 52.194445848464966 sec.
如果要测量实际的迭代时间,则需要在每次迭代结束时同步队列:
queue.finish()
或等效地通过Reikna API
thr.synchronize()
有几点值得注意。
运行代码时出现了一些奇怪的地址边界错误。这似乎是因为PyOpenCL的复杂值处理函数(如cdouble_mul
)实际上是宏,并且当您为它们提供访问内存的AST位时会出现错误,例如
cdouble_mul(L_op[gid0 + num0 * gid1], C[gid0 + num0 * gid1])
如果在将值传递给宏之前预加载错误,则错误消失:
cdouble_t L_op_val = L_op[gid0 + num0 * gid1];
cdouble_t C_val = C[gid0 + num0 * gid1];
cdouble_mul(L_op_val, C_val);
您不需要从1j*dt
创建1个元素的数组。您可以将其作为标量传递给内核。
也许您已经意识到这一点,但以防万一:您将数组形状作为全局大小传递给内核,因此在其中您基本上将NxM数组作为MxN数组进行寻址。只要数组在内存中是连续的并且所有操作都是元素的,它并不重要,但请确保牢记这一点。
如果我使用Reikna编写nonlinear_operator
内核
gpe2 = reikna.algorithms.PureParallel([
Parameter('U', Annotation(U, 'i')),
Parameter('Vmat', Annotation(Vmat, 'i')),
Parameter('idt', Annotation(idtmat.reshape(1)[0], 's')),
Parameter('U_aft', Annotation(U, 'o'))],
"""
${U.ctype} U = ${U.load_same};
${Vmat.ctype} U_squared = ${norm}(U);
${Vmat.ctype} mag = U_squared + ${Vmat.load_same};
${U_aft.store_same}(
${mul_cc}(
${exp}(${mul_cr}(${idt}, -mag)),
U));
""",
render_kwds=dict(
norm=reikna.cluda.functions.norm(U.dtype),
mul_cr=reikna.cluda.functions.mul(U.dtype, Vmat.dtype),
mul_cc=reikna.cluda.functions.mul(U.dtype, U.dtype),
exp=reikna.cluda.functions.exp(U.dtype)))
gpe2c = gpe2.compile(thr)
# in the loop
gpe2c(op_dev, Vmat_dev, idtmat[0], op_dev)
它的工作速度是原始内核的两倍。当然,这并不重要,因为大部分时间花在了FFT上。
同样,您可能已经意识到这一点,但Reikna针对非幂2问题大小的FFT使用Bluestein算法,该算法基本上使工作量翻倍。此外,不是在每次迭代中在GPU上进行两次移位,而是在循环之前将L_op
移位一次会更快(您也可以使用numpy.fft.fftfreq
生成它,这样可以为您提供正确的频率顺序距离)。