我有以下列表清单:
my_lol <- structure(list(coolfactor_score = list(structure(c(0.164477631065473,
0.198253819406019, 0.396414447052519, 0.133118603987442, 0.107735498488546
), .Names = c("B", "Mac", "NK", "Neu", "Stro")), structure(c(0.186215537135912,
0.18408529174803, 0.375349920115798, 0.247664923324821, 0.006684327675438
), .Names = c("B", "Mac", "NK", "Neu", "Stro"))), sr_crt = list(
structure(list(crt = 0.133118603987442, sr = 0.407076876403305), .Names = c("crt",
"sr")), structure(list(crt = 0.18408529174803, sr = 0.0829181742326453), .Names = c("crt",
"sr"))), sample_names = c("Sample1", "Sample2")), .Names = c("coolfactor_score",
"sr_crt", "sample_names"))
看起来像这样:
> my_lol
$coolfactor_score
$coolfactor_score[[1]]
B Mac NK Neu Stro
0.1644776 0.1982538 0.3964144 0.1331186 0.1077355
$coolfactor_score[[2]]
B Mac NK Neu Stro
0.186215537 0.184085292 0.375349920 0.247664923 0.006684328
$sr_crt
$sr_crt[[1]]
$sr_crt[[1]]$crt
[1] 0.1331186
$sr_crt[[1]]$sr
[1] 0.4070769
$sr_crt[[2]]
$sr_crt[[2]]$crt
[1] 0.1840853
$sr_crt[[2]]$sr
[1] 0.08291817
$sample_names
[1] "Sample1" "Sample2"
# Note that the number of samples can be more than 2 and cell type more than 5.
如何将其整理到此数据框(tibbles)
CellType Sample CoolFactorScore SR CRT
B Sample1 0.1644776 0.4070769 0.1331186
Mac Sample1 0.1982538 0.4070769 0.1331186
NK Sample1 0.3964144 0.4070769 0.1331186
Neu Sample1 0.1331186 0.4070769 0.1331186
Stro Sample1 0.1077355 0.4070769 0.1331186
B Sample2 0.186215537 0.08291817 0.1840853
Mac Sample2 0.184085292 0.08291817 0.1840853
NK Sample2 0.375349920 0.08291817 0.1840853
Neu Sample2 0.247664923 0.08291817 0.1840853
Stro Sample2 0.006684328 0.08291817 0.1840853
答案 0 :(得分:3)
使用基础R的一种方式:
mylist <- lapply(1:2, function(i) {
#this is the important bit where you extract the corresponding elements
#of sample 1 first and sample 2 second.
df <- data.frame(lapply(my_lol, '[', i))
names(df) <- c('CoolFactorScore', 'CRT', 'SR', 'Sample')
df$CellType <- rownames(df)
row.names(df) <- NULL
df
})
do.call(rbind, mylist)
输出:
CoolFactorScore CRT SR Sample CellType
1 0.164477631 0.1331186 0.40707688 Sample1 B
2 0.198253819 0.1331186 0.40707688 Sample1 Mac
3 0.396414447 0.1331186 0.40707688 Sample1 NK
4 0.133118604 0.1331186 0.40707688 Sample1 Neu
5 0.107735498 0.1331186 0.40707688 Sample1 Stro
6 0.186215537 0.1840853 0.08291817 Sample2 B
7 0.184085292 0.1840853 0.08291817 Sample2 Mac
8 0.375349920 0.1840853 0.08291817 Sample2 NK
9 0.247664923 0.1840853 0.08291817 Sample2 Neu
10 0.006684328 0.1840853 0.08291817 Sample2 Stro
答案 1 :(得分:0)
这是一个不那么优雅的方法:
int <- lapply(1:2, function(x) do.call(data.frame,
c(list(CoolFactorScore=my_lol[[1]][[x]]),
my_lol[[2]][[x]],
list(Sample=my_lol[[3]][[x]]))))
do.call(rbind, int)
CoolFactorScore crt sr Sample
B 0.164477631 0.1331186 0.40707688 Sample1
Mac 0.198253819 0.1331186 0.40707688 Sample1
NK 0.396414447 0.1331186 0.40707688 Sample1
Neu 0.133118604 0.1331186 0.40707688 Sample1
Stro 0.107735498 0.1331186 0.40707688 Sample1
B1 0.186215537 0.1840853 0.08291817 Sample2
Mac1 0.184085292 0.1840853 0.08291817 Sample2
NK1 0.375349920 0.1840853 0.08291817 Sample2
Neu1 0.247664923 0.1840853 0.08291817 Sample2
Stro1 0.006684328 0.1840853 0.08291817 Sample2
答案 2 :(得分:0)
这是一个使用data.table包函数的无循环解决方案。
library(data.table)
步骤1:打开列表
unlist(my_lol) -> tmp1
第2步:转置并将其转换为data.table
这样,您将获得可以从原始数据组成的最宽的表。它应该根据要求转换(在后续步骤中)到长表。
as.data.table(t(tmp1)) -> tmp2
第3步:&#39; sample_names1&#39;和&#39; sample_names2&#39;有必要转变为样本&#39;手动。
如果您想要推广到多个sample_names值,那么您应该根据可能值的语法修改此步骤。(此版本适用于以下sample_names值语法:&#39; Sample1&#39;, &#39; Sample2&#39;,&#39; Sample3&#39;等等。)
names(tmp2) <- gsub('sample_names\\d+', 'Sample', names(tmp2))
步骤4:根据tmp2表的字段名称
创建度量字段名称measure <- unique(names(tmp2))
步骤5:从宽表(tmp2)
创建更长的表(tmp3)tmp3 <- melt(tmp2,
measure.vars = patterns(measure),
value.name = measure)
步骤6:根据请求重命名列
names(tmp3) <- gsub('coolfactor_score.', '', names(tmp3))
names(tmp3) <- gsub('sr_crt.', '', names(tmp3))
setnames(tmp3, 'crt', 'CRT')
setnames(tmp3, 'sr', 'SR')
步骤7:从tmp3中创建更长的表(mylist)
mylist <- melt(tmp3,
id.vars = c('Sample',
'CRT',
'SR'),
measure.vars = c('B',
'Mac',
'NK',
'Neu',
'Stro'),
value.name = 'CoolFactorScore',
variable.name = 'CellType')
步骤8:根据请求重新排序列
setcolorder(mylist, c('CellType', 'Sample', 'CoolFactorScore', 'SR', 'CRT'))
步骤9:根据请求重新排序行
mylist <- mylist[order(Sample, CellType)]