我有两个小问题,首先是这个。
input_data <- tibble::tribble(
# Number of samples can be more than 2.
# Number of genes around 24K
~Genes, ~Sample1, ~Sample2,
"Ncr1", 8.2, 10.10,
"Il1f9", 3.2, 20.30,
"Stfa2l1", 2.3, 0.3,
"Klra10", 5.5, 12.0,
"Dcn", 1.8, 0,
"Cxcr2", 1.3, 1.1,
"Foo", 20, 70
)
input_data
#> # A tibble: 7 × 3
#> Genes Sample1 Sample2
#> <chr> <dbl> <dbl>
#> 1 Ncr1 8.2 10.1
#> 2 Il1f9 3.2 20.3
#> 3 Stfa2l1 2.3 0.3
#> 4 Klra10 5.5 12.0
#> 5 Dcn 1.8 0.0
#> 6 Cxcr2 1.3 1.1
#> 7 Foo 20.0 70.0
第二个就是这个,
fixed_score <- tibble::tribble(
# Number of non genes column can be more than 5.
~Genes, ~B, ~Mac, ~NK, ~Neu, ~Stro,
"Ncr1", 0.087, 0.151, 0.495, 0.002, 0.004,
"Il1f9", 0.154, 0.099, 0.002, 0.333, 0.005,
"Stfa2l1", 0.208, 0.111, 0.002, 0.332, 0.005,
"Klra10", 0.085, 0.139, 0.496, 0.001, 0.004,
"Dcn", 0.132, 0.358, 0.003, 0.003, 0.979,
"Cxcr2", 0.132, 0.358, 0.003, 0.003, 0.979
)
fixed_score
#> # A tibble: 6 × 6
#> Genes B Mac NK Neu Stro
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Ncr1 0.087 0.151 0.495 0.002 0.004
#> 2 Il1f9 0.154 0.099 0.002 0.333 0.005
#> 3 Stfa2l1 0.208 0.111 0.002 0.332 0.005
#> 4 Klra10 0.085 0.139 0.496 0.001 0.004
#> 5 Dcn 0.132 0.358 0.003 0.003 0.979
#> 6 Cxcr2 0.132 0.358 0.003 0.003 0.979
我想要做的是将每个Sample1
(和Sample2
)的值相乘
使用fixed_score
中相应的基因行值。
为Sample1
B Mac NK Neu Stro
Ncr1 0.7134 1.2382 4.0590 0.0164 0.0328
Il1f9 0.4928 0.3168 0.0064 1.0656 0.0160
Stfa2l1 0.4784 0.2553 0.0046 0.7636 0.0115
Klra10 0.4675 0.7645 2.7280 0.0055 0.0220
Dcn 0.2376 0.6444 0.0054 0.0054 1.7622
Cxcr2 0.1716 0.4654 0.0039 0.0039 1.2727
因此,在上面的结果中,我们得到以下值:
Ncr1 (sample1) x Ncr1 (fixed_score B) = 8.2 x 0.87 = 7.134
Il1f9 (sample1) x Il1f9 (fixed_score B) = 3.2 x 0.154 = 0.493
Sample2
的结果是:
B Mac NK Neu Stro
Ncr1 0.8787 1.5251 4.9995 0.0202 0.0404
Il1f9 3.1262 2.0097 0.0406 6.7599 0.1015
Stfa2l1 0.0624 0.0333 0.0006 0.0996 0.0015
Klra10 1.0200 1.6680 5.9520 0.0120 0.0480
Dcn 0.0000 0.0000 0.0000 0.0000 0.0000
Cxcr2 0.1452 0.3938 0.0033 0.0033 1.0769
如何使用data.table或dplyr执行此操作?由于我们的行数 非常大。最好有快速的方法。
答案 0 :(得分:8)
如果您想要快速,只需使用矩阵。
让我们创建你的矩阵(它们应该如何放在首位)
input_mat <- as.matrix(input_data[-1])
row.names(input_mat) <- unlist(input_data[, 1])
fixed_mat <- as.matrix(fixed_score[-1])
row.names(fixed_mat) <- unlist(fixed_score[, 1])
然后,你可以简单地做
lapply(colnames(input_mat), function(x) input_mat[rownames(fixed_mat), x] * fixed_mat)
# [[1]]
# B Mac NK Neu Stro
# Ncr1 0.7134 1.2382 4.0590 0.0164 0.0328
# Il1f9 0.4928 0.3168 0.0064 1.0656 0.0160
# Stfa2l1 0.4784 0.2553 0.0046 0.7636 0.0115
# Klra10 0.4675 0.7645 2.7280 0.0055 0.0220
# Dcn 0.2376 0.6444 0.0054 0.0054 1.7622
# Cxcr2 0.1716 0.4654 0.0039 0.0039 1.2727
#
# [[2]]
# B Mac NK Neu Stro
# Ncr1 0.8787 1.5251 4.9995 0.0202 0.0404
# Il1f9 3.1262 2.0097 0.0406 6.7599 0.1015
# Stfa2l1 0.0624 0.0333 0.0006 0.0996 0.0015
# Klra10 1.0200 1.6680 5.9520 0.0120 0.0480
# Dcn 0.0000 0.0000 0.0000 0.0000 0.0000
# Cxcr2 0.1452 0.3938 0.0033 0.0033 1.0769
这应该非常快
答案 1 :(得分:5)
我们可以使用tidyverse
library(tidyverse)
input_data %>%
#remove the 'Genes' column
select(-matches("Genes")) %>%
#loop the other columns cbind with the Genes column
map(~bind_cols(input_data['Genes'], Sample=.)) %>%
#left join with 'fixed_score' dataset by 'Genes'
map(~left_join(fixed_score, ., by = "Genes")) %>%
#multiply the columns selected in 'vars' with 'Sample'
map(~mutate_at(., vars(B:Stro), funs(.*Sample))) %>%
#remove the 'Sample' column from the list of tibbles
map(~select(., -matches("Sample")))
#$Sample1
# A tibble: 6 × 6
# Genes B Mac NK Neu Stro
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Ncr1 0.7134 1.2382 4.0590 0.0164 0.0328
#2 Il1f9 0.4928 0.3168 0.0064 1.0656 0.0160
#3 Stfa2l1 0.4784 0.2553 0.0046 0.7636 0.0115
#4 Klra10 0.4675 0.7645 2.7280 0.0055 0.0220
#5 Dcn 0.2376 0.6444 0.0054 0.0054 1.7622
#6 Cxcr2 0.1716 0.4654 0.0039 0.0039 1.2727
#$Sample2
# A tibble: 6 × 6
# Genes B Mac NK Neu Stro
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Ncr1 0.8787 1.5251 4.9995 0.0202 0.0404
#2 Il1f9 3.1262 2.0097 0.0406 6.7599 0.1015
#3 Stfa2l1 0.0624 0.0333 0.0006 0.0996 0.0015
#4 Klra10 1.0200 1.6680 5.9520 0.0120 0.0480
#5 Dcn 0.0000 0.0000 0.0000 0.0000 0.0000
#6 Cxcr2 0.1452 0.3938 0.0033 0.0033 1.0769