如何改进大型SPARQL数据集的索引?

时间:2017-05-02 13:52:35

标签: sparql marklogic semantic-web marklogic-8

这是一个非常简单的SPARQL查询,需要花费很长时间(10秒)才能在Marklogic(8.0-6.4)中运行。我该怎么做才能加快速度?

数据基于一组地理名称,并且具有相同的数量级(大约2200万三倍,看起来像)。

PREFIX  gj:   <http://mycompany.com/geonames-jurisdiction/1.0/schema#>
PREFIX  rdf:  <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX  gn:   <http://www.geonames.org/ontology#>

SELECT  *
FROM <http://mycompany.com/geonames-jurisdiction/1.0/data>
FROM <http://mycompany.com/geonames-jurisdiction/1.0/rule-data>
WHERE
  { ?this_0  rdf:type  gj:LocalCounty ;
             gn:name   ?name_1 .
  }
ORDER BY ASC(?name_1)
LIMIT   100

更新

根据MarkLogic的建议,我运行了一个查询,该查询将一个新属性插入到特定于本地县的数据库中:

INSERT {
  GRAPH <http://mycompany.com/geonames-jurisdiction/1.0/rule-data> {
    ?this gj:localCountyName ?name .
  }
}
WHERE {
    ?this a gj:LocalCounty .
    ?this gn:name ?name .
}

我还提出了一些建议的查询修订:

PREFIX  gj:   <http://mycompany.com/geonames-jurisdiction/1.0/schema#>
PREFIX  rdf:  <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX  gn:   <http://www.geonames.org/ontology#>

SELECT ?this_0 ?name_1
FROM <http://mycompany.com/geonames-jurisdiction/1.0/data>
FROM <http://mycompany.com/geonames-jurisdiction/1.0/rule-data>
WHERE
  { ?this_0  rdf:type  gj:LocalCounty ;
             gj:localCountyName   ?name_1 .
  }
ORDER BY ?name_1
LIMIT   20

这会将总查询时间缩短到约4秒,这样会更好,但仍然很大。

来自上述查询的跟踪信息:

2017-05-04 12:00:18.684 Info: <triple-value-statistics count="147540458" unique-subjects="25064012" unique-predicates="81" unique-objects="67600843" xmlns="cts:triple-value-statistics">
2017-05-04 12:00:18.684 Info:   <triple-value-entries>
2017-05-04 12:00:18.684 Info:     <triple-value-entry count="8385355">
2017-05-04 12:00:18.684 Info:       <triple-value>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</triple-value>
2017-05-04 12:00:18.684 Info:       <subject-statistics count="0" unique-predicates="0" unique-objects="0"/>
2017-05-04 12:00:18.684 Info:       <predicate-statistics count="8356279" unique-subjects="8341989" unique-objects="13"/>
2017-05-04 12:00:18.684 Info:       <object-statistics count="0" unique-subjects="0" unique-predicates="0"/>
2017-05-04 12:00:18.684 Info:     </triple-value-entry>
2017-05-04 12:00:18.684 Info:     <triple-value-entry count="29204">
2017-05-04 12:00:18.684 Info:       <triple-value>http://mycompany.com/geonames-jurisdiction/1.0/schema#LocalCounty</triple-value>
2017-05-04 12:00:18.684 Info:       <subject-statistics count="2" unique-predicates="2" unique-objects="2"/>
2017-05-04 12:00:18.684 Info:       <predicate-statistics count="0" unique-subjects="0" unique-objects="0"/>
2017-05-04 12:00:18.684 Info:       <object-statistics count="29202" unique-subjects="29202" unique-predicates="3"/>
2017-05-04 12:00:18.684 Info:     </triple-value-entry>
2017-05-04 12:00:18.684 Info:     <triple-value-entry count="29201">
2017-05-04 12:00:18.684 Info:       <triple-value>http://mycompany.com/geonames-jurisdiction/1.0/schema#localCountyName</triple-value>
2017-05-04 12:00:18.684 Info:       <subject-statistics count="0" unique-predicates="0" unique-objects="0"/>
2017-05-04 12:00:18.684 Info:       <predicate-statistics count="29201" unique-subjects="29201" unique-objects="26692"/>
2017-05-04 12:00:18.684 Info:       <object-statistics count="0" unique-subjects="0" unique-predicates="0"/>
2017-05-04 12:00:18.684 Info:     </triple-value-entry>
2017-05-04 12:00:18.684 Info:   </triple-value-entries>
2017-05-04 12:00:18.684 Info: </triple-value-statistics>
2017-05-04 12:00:18.684 Info: [Event:id=SPARQL AST] sessionKey=7777437449602930525
2017-05-04 12:00:18.684 Info:   initialPlan=SPARQLModule[
2017-05-04 12:00:18.684 Info:   Prolog[]
2017-05-04 12:00:18.684 Info:   SPARQLSelect[SPARQLLimit[
2017-05-04 12:00:18.684 Info:       LIMIT GraphNode[Literal "20"^^<http://www.w3.org/2001/XMLSchema#integer>]
2017-05-04 12:00:18.684 Info:       SPARQLProject[order(1)
2017-05-04 12:00:18.684 Info:         GraphNode[Var this_0 0]
2017-05-04 12:00:18.684 Info:         GraphNode[Var name_1 1]
2017-05-04 12:00:18.684 Info:         SPARQLOrder[order(1) UNSORTED
2017-05-04 12:00:18.684 Info:           OrderSpec[
2017-05-04 12:00:18.684 Info:             Variable[QName[(Unknown) name_1] 1]
2017-05-04 12:00:18.684 Info:             ASCENDING EMPTY MIN]
2017-05-04 12:00:18.684 Info:           SPARQLMergeJoin[order(0) hash(0==0) scatter()
2017-05-04 12:00:18.684 Info:             TriplePattern[order(0,1) PSO
2017-05-04 12:00:18.684 Info:               GraphNode[Var this_0 0]
2017-05-04 12:00:18.684 Info:               GraphNode[IRI <http://mycompany.com/geonames-jurisdiction/1.0/schema#localCountyName>]
2017-05-04 12:00:18.684 Info:               GraphNode[Var name_1 1]]
2017-05-04 12:00:18.684 Info:             TriplePattern[order(0) OPS
2017-05-04 12:00:18.684 Info:               GraphNode[Var this_0 0]
2017-05-04 12:00:18.684 Info:               GraphNode[IRI <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>]
2017-05-04 12:00:18.684 Info:               GraphNode[IRI <http://mycompany.com/geonames-jurisdiction/1.0/schema#LocalCounty>]]]]]]]]
2017-05-04 12:00:18.684 Info: [Event:id=SPARQL Cost Analysis] sessionKey=7777437449602930525 optimize=1 r=3 t=1.28811 os=360 is=15 mutations=9 seed=15212683942933123635
2017-05-04 12:00:18.684 Info:   initialCost=(m:6.02656e+07,r:0,io:(52.931/1.20414e+07/0),cpu(2):(0/116805/0),mem:87603,c:20,crd:[20,20])
2017-05-04 12:00:18.726 Info: [Event:id=SPARQL Cost Analysis] sessionKey=7777437449602930525 diff=0 diff%=0 r=0
2017-05-04 12:00:18.726 Info:   cost=(m:6.02656e+07,r:0,io:(52.931/1.20414e+07/0),cpu(2):(0/116805/0),mem:87603,c:20,crd:[20,20])
2017-05-04 12:00:18.726 Info: [Event:id=SPARQL Cost Analysis] sessionKey=7777437449602930525 diff=0 diff%=0 r=1
2017-05-04 12:00:18.726 Info:   cost=(m:6.02656e+07,r:0,io:(52.931/1.20414e+07/0),cpu(2):(0/116805/0),mem:87603,c:20,crd:[20,20])
2017-05-04 12:00:18.728 Info: [Event:id=SPARQL Cost Analysis] sessionKey=7777437449602930525 diff=0 diff%=0 r=2
2017-05-04 12:00:18.728 Info:   cost=(m:6.02656e+07,r:0,io:(52.931/1.20414e+07/0),cpu(2):(0/116805/0),mem:87603,c:20,crd:[20,20])
2017-05-04 12:00:18.728 Info: [Event:id=SPARQL Cost Analysis] sessionKey=7777437449602930525
2017-05-04 12:00:18.728 Info:   bestCost=(m:6.02656e+07,r:0,io:(52.931/1.20414e+07/0),cpu(2):(0/116805/0),mem:87603,c:20,crd:[20,20])
2017-05-04 12:00:18.729 Info: [Event:id=SPARQL AST] sessionKey=7777437449602930525
2017-05-04 12:00:18.729 Info:   plan=SPARQLModule[
2017-05-04 12:00:18.729 Info:   Prolog[]
2017-05-04 12:00:18.729 Info:   SPARQLSelect[SPARQLLimit[
2017-05-04 12:00:18.729 Info:       LIMIT GraphNode[Literal "20"^^<http://www.w3.org/2001/XMLSchema#integer>]
2017-05-04 12:00:18.729 Info:       SPARQLProject[order(1)
2017-05-04 12:00:18.729 Info:         GraphNode[Var this_0 0]
2017-05-04 12:00:18.729 Info:         GraphNode[Var name_1 1]
2017-05-04 12:00:18.729 Info:         SPARQLOrder[order(1) UNSORTED
2017-05-04 12:00:18.729 Info:           OrderSpec[
2017-05-04 12:00:18.729 Info:             Variable[QName[(Unknown) name_1] 1]
2017-05-04 12:00:18.729 Info:             ASCENDING EMPTY MIN]
2017-05-04 12:00:18.729 Info:           SPARQLMergeJoin[order(0) hash(0==0) scatter()
2017-05-04 12:00:18.729 Info:             TriplePattern[order(0,1) PSO
2017-05-04 12:00:18.729 Info:               GraphNode[Var this_0 0]
2017-05-04 12:00:18.729 Info:               GraphNode[IRI <http://mycompany.com/geonames-jurisdiction/1.0/schema#localCountyName>]
2017-05-04 12:00:18.729 Info:               GraphNode[Var name_1 1]]
2017-05-04 12:00:18.729 Info:             TriplePattern[order(0) OPS
2017-05-04 12:00:18.729 Info:               GraphNode[Var this_0 0]
2017-05-04 12:00:18.729 Info:               GraphNode[IRI <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>]
2017-05-04 12:00:18.729 Info:               GraphNode[IRI <http://mycompany.com/geonames-jurisdiction/1.0/schema#LocalCounty>]]]]]]]]

2 个答案:

答案 0 :(得分:1)

根据您的硬件(内存,CPU,磁盘),您可以通过增加林的数量来提高性能。

答案 1 :(得分:0)

MarkLogic使用横向扩展架构,因此无法保证单台机器的可扩展性能。扩展的最佳方法是添加更多节点,特别是每个节点都有足够内存的电子节点。