如何确定python类型的内存使用情况?

时间:2017-05-02 12:29:43

标签: python memory

使用大型数据集意味着担心内存使用情况。是否有一个bulit-in函数,整洁的hack或广泛可用的包来确定给定类型的内存使用情况?

在当前的情况下,我想知道单个pandas.timedelta对象需要多少字节的内存,以便确定可以合理地加载到本地内存中的多少字节。但是,确定任何类型的内存要求的一般方法都是可取的。

1 个答案:

答案 0 :(得分:1)

this can be done by using python memory profiler
>>> from guppy import hpy; h=hpy()
>>> h.heap()
Partition of a set of 48477 objects. Total size = 3265516 bytes.
 Index  Count   %     Size   % Cumulative  % Kind (class / dict of class)
     0  25773  53  1612820  49   1612820  49 str
     1  11699  24   483960  15   2096780  64 tuple
     2    174   0   241584   7   2338364  72 dict of module
     3   3478   7   222592   7   2560956  78 types.CodeType
     4   3296   7   184576   6   2745532  84 function
     5    401   1   175112   5   2920644  89 dict of class
     6    108   0    81888   3   3002532  92 dict (no owner)
     7    114   0    79632   2   3082164  94 dict of type
     8    117   0    51336   2   3133500  96 type
     9    667   1    24012   1   3157512  97 __builtin__.wrapper_descriptor
<76 more rows. Type e.g. '_.more' to view.>
>>> h.iso(1,[],{})
Partition of a set of 3 objects. Total size = 176 bytes.
 Index  Count   %     Size   % Cumulative  % Kind (class / dict of class)
     0      1  33      136  77       136  77 dict (no owner)
     1      1  33       28  16       164  93 list
     2      1  33       12   7       176 100 int
>>> x=[]
>>> h.iso(x).sp
 0: h.Root.i0_modules['__main__'].__dict__['x']
>>>