考虑我的输入数据input_a和input_b
np.array([1,2,3,4,5,6,7,8,9,10,11,12]).reshape(2,3,2)
array([[[ 1, 2],
[ 3, 4],
[ 5, 6]],
[[ 7, 8],
[ 9, 10],
[11, 12]]])
和
np.array([1,2,3,4,5,6,7,8,9,10,11,12]).reshape(2,3,2)
array([[ 1, 1],
[-1, -1],
[ 1, -1]])
我想要实现的目标
np.einsum('kmn, mk -> mn', input_a, input_b)
array([[ 15, 18],
[ 45, 52],
[ 91, 102]])
如何将此转换为keras中的lambda图层
到目前为止我尝试了什么
def tensor_product(x):
input_a = x[0]
input_b = x[1]
y = np.einsum('kmn, mk -> mn', input_a, input_b)
return y
dim_a = Input(shape=(2,))
dim_b = Input(shape=(2,2,))
layer_3 = Lambda(tensor_product, output_shape=(2,))([dim_a, dim_b])
model = Model(inputs=[input_a, input_b], outputs=layer_3)
谢谢
答案 0 :(得分:1)
from keras.layers import *
def tensor_product(x):
a = x[0]
b = x[1]
b = K.permute_dimensions(b, (1, 0, 2))
y = K.batch_dot(a, b, axes=1)
return y
a = Input(shape=(2,))
b = Input(shape=(2,2,))
c = Lambda(tensor_product, output_shape=(2,))([a, b])
model = Model([a, b], c)