基本上,我正在创建一个使用Keras和Tensorflow后端的CNN。我想要插入两个具有相同输入层的图层,然后将它们连接起来,就像这样:
model = Sequential()
model.add(Convolution1D(128, (4), activation='relu',input_shape=(599,128))
model.add(MaxPooling1D(pool_size=(4)))
model.add(Convolution1D(256, (4), activation='relu')
model.add(MaxPooling1D(pool_size=(2)))
model.add(Convolution1D(256, (4), activation='relu')
model.add(MaxPooling1D(pool_size=(2)))
model.add(Convolution1D(512, (4), activation='relu')
# output 1 = GlobalMaxPooling1D() # from last conv layer
# output 2 = GlobalAveragePooling1D() # from last conv layer
# model.add(Concatenate((output 1, output 2))
# at this point output should have a shape of 1024,1 (from 512 * 2)
model.add(Dense(1024))
model.add(Dense(512))
以简单的方式以图形方式显示:
...
cv4
/ \
/ \
gMaxP|gAvrgP (each 512,)
\ /
\ /
dense(1024,)
我觉得我错过了一些愚蠢明显的东西。有人可以叫醒我吗?
答案 0 :(得分:0)
使用Model class API,它应该是这样的:
inputs = Input(shape=(599,128), name='image_input')
x = Convolution1D(128, (4), activation='relu')(inputs)
x = MaxPooling1D(pool_size=(4))(x)
x = Convolution1D(256, (4), activation='relu')(x)
x = MaxPooling1D(pool_size=(2))(x)
x = Convolution1D(256, (4), activation='relu')(x)
x = MaxPooling1D(pool_size=(2))(x)
x = Convolution1D(512, (4), activation='relu')(x)
output_1 = GlobalMaxPooling1D()(x) # from last conv layer
output_2 = GlobalAveragePooling1D()(x) # from last conv layer
x = concatenate([output_1, output_2])
# at this point output should have a shape of 1024,1 (from 512 * 2)
x = Dense(1024)(x)
x = Dense(512)(x)