我想采用我在线培训的tensorflow模型,并使用我发布的python程序在本地运行。
训练结束后,我得到一个包含两个文件/saved_model.pb和一个文件夹/变量的目录/模型。在本地部署这个的最简单方法是什么?
我正在关注here部署冷冻模型,但我无法在.pb中阅读。我直接将saved_model.pb下载到我的工作中并尝试了
with tf.gfile.GFile("saved_model.pb", "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
google.protobuf.message.DecodeError: Truncated message.
在SO here上看,他们提出了不同的路线。
with tf.gfile.GFile("saved_model.pb", "rb") as f:
proto_b=f.read()
graph_def = tf.GraphDef()
text_format.Merge(proto_b, graph_def)
builtins.TypeError: a bytes-like object is required, not 'str'
我发现这令人困惑,因为
type(proto_b)
<class 'bytes'>
type(graph_def)
<class 'tensorflow.core.framework.graph_pb2.GraphDef'>
为什么错误,也不是字符串?
部署受云训练的模型的最佳方式是什么?
完整代码
import tensorflow as tf
import sys
from google.protobuf import text_format
# change this as you see fit
#image_path = sys.argv[1]
image_path="test.jpg"
# Read in the image_data
image_data = tf.gfile.FastGFile(image_path, 'rb').read()
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("dict.txt")]
# Unpersists graph from file
with tf.gfile.GFile("saved_model.pb", "rb") as f:
proto_b=f.read()
graph_def = tf.GraphDef()
text_format.Merge(proto_b, graph_def)
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('conv1/weights:0')
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
print('%s (score = %.5f)' % (human_string, score))
答案 0 :(得分:2)
您部署到CloudML Engine服务的模型格式为SavedModel
。使用loader
模块在Python中加载SavedModel
非常简单:
import tensorflow as tf
with tf.Session(graph=tf.Graph()) as sess:
tf.saved_model.loader.load(
sess,
[tf.saved_model.tag_constants.SERVING],
path_to_model)
要进行推理,您的代码几乎是正确的;您需要确保将批次送到session.run
,所以只需将image_data
包裹在列表中:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('conv1/weights:0')
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': [image_data]})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
print('%s (score = %.5f)' % (human_string, score))
(请注意,根据您的图表,将input_data包装在列表中可能会增加预测张量的等级,您需要相应地调整代码。)