我在做一些看似简单的spark sql过滤工作时遇到异常:
someOtherDF
.filter(/*somecondition*/)
.select($"eventId")
.createOrReplaceTempView("myTempTable")
records
.filter(s"eventId NOT IN (SELECT eventId FROM myTempTable)")
知道如何解决这个问题吗?
注意:
错误:
Stacktrace:
org.apache.spark.SparkException: Exception thrown in awaitResult:
at org.apache.spark.util.ThreadUtils$.awaitResultInForkJoinSafely(ThreadUtils.scala:215)
at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec.doExecuteBroadcast(BroadcastExchangeExec.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeBroadcast$1.apply(SparkPlan.scala:124)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeBroadcast$1.apply(SparkPlan.scala:124)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:135)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:132)
at org.apache.spark.sql.execution.SparkPlan.executeBroadcast(SparkPlan.scala:123)
at org.apache.spark.sql.execution.joins.BroadcastNestedLoopJoinExec.doExecute(BroadcastNestedLoopJoinExec.scala:343)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:114)
at ...
Caused by: java.util.concurrent.TimeoutException: Futures timed out after [300 seconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
at org.apache.spark.util.ThreadUtils$.awaitResultInForkJoinSafely(ThreadUtils.scala:212)
... 84 more
答案 0 :(得分:0)
使用以下部分: 1)How to exclude rows that don't join with another table? 2)Spark Duplicate columns in dataframe after join
我可以使用左外连接解决我的问题:
val leftColKey = records("eventId")
val rightColKey = someOtherDF("eventId")
val toAppend: DataFrame = records
.join(someOtherDF, leftColKey === rightColKey, "left_outer")
.filter(rightColKey.isNull) // Keep rows without a match in 'someOtherDF'. See (1)
.drop(rightColKey) // Needed to discard duplicate column. See (2)
性能非常好,并且不会遇到“未来超时”问题。
修改强>
正如一位同事向我指出的那样,“leftanti”连接类型更有效。