我正在使用Tensorflow后端在Keras写CNN。我正在尝试创建一个“unpooling”掩码(或汇集索引),如下所述:https://arxiv.org/pdf/1511.00561.pdf
我已经构建了一个没有这个解开掩码的CNN,它运行正常。我按照以下方式创建掩码(这只是更大网络的一部分,每个conv / maxpooling块都有相同的想法):
img_input = Input(shape=(num_channels, img_h, img_w))
x = conv_block(img_input, kernel, 512)
orig = x #Save output x
x = MaxPooling2D()(x)
x = UpSampling2D()(x)
bool_mask = K.greater_equal(orig, x)
mask = K.cast(bool_mask, dtype='float32')
mask_input = Input(tensor=mask) # Makes the mask to a Keras tensor to use as input
x = keras.layers.multiply([mask_input, x])
x = deconv_block(x, kernel, 512, 512)
x = Reshape((n_labels, img_h * img_w))(x)
x = Permute((2, 1))(x)
main_output = Activation('softmax')(x)
model = Model(inputs=img_input, outputs=main_output)
由于我从其他图层创建“第二个输入”mask_input,我不希望将它作为模型输入。但如果我不这样做,我无法创建模型。如果我将最后一行更改为:
model = Model(inputs=[img_input, mask_input], outputs=main_output)
我现在可以创建模型,但是当我想要使用它时,我需要第二个输入,直到我创建它才会有。
有没有人有一个不同的解决方案来创建一个unpooling-mask或知道如何解决几个输入的问题?
答案 0 :(得分:3)
我会将所有操作放在图层中,这是模型所期望的(我假设函数conv_block
和deconv_block
完全由图层组成,否则,它们应该进入{{1} }层)。
您不需要将已处理的x作为输入。您可以像您一样拆分模型,然后再次合并,制作并行分支。
我无法测试您的数据和维度,但是在一个简单的测试中,我在这里运行了关于连接,它的工作原理。 (我在theano中测试过,因为我没有tensorflow。我希望一切都能正常工作......但是也许你应该在连接和Greater_equal上尝试不同的轴)
Lambda
以下是我使用MNIST数据运行的简单测试:
img_input = Input(shape=(num_channels, img_h, img_w))
x = conv_block(img_input, kernel, 512)
orig = x #Save output x
x = MaxPooling2D()(x)
x = UpSampling2D()(x)
#here we're going to reshape the data for a concatenation:
#xReshaped and origReshaped are now split branches
xReshaped = Reshape((1,channels_after_conv_block, h_after, w_after))(x)
origReshaped = Reshape((1,channels_after_conv_block, h_after, w_after))(orig)
#concatenation - here, you unite both branches again
#normally you don't need to reshape or use the axis var,
#but here we want to keep track of what was x and what was orig.
together = Concatenate(axis=1)([origReshaped,xReshaped])
bool_mask = Lambda(lambda t: K.greater_equal(t[:,0], t[:,1]),
output_shape=(channels_after_conv_block, h_after, w_after))(together)
mask = Lambda(lambda t: K.cast(t, dtype='float32'))(bool_mask)
x = Multiply()([mask, x])
x = deconv_block(x, kernel, 512, 512)
x = Reshape((n_labels, img_h * img_w))(x)
x = Permute((2, 1))(x)
main_output = Activation('softmax')(x)
model = Model(inputs=img_input, outputs=main_output)