我有一张如下表:
**ID tDate Product Price Quantity BuySell Status**
1 10-May-17 pppp $12 20 Buy Null
2 12-May-17 tttt $10 20 Sell Null
3 12-May-17 tttt $10 20 Buy Null
4 18-May-17 pppp $14 20 Sell Null
5 18-May-17 pppp $14 20 Buy Null
6 18-May-17 pppp $14 20 Sell Null
我需要更新名为STATUS的字段,并将其设置为“匹配”,只要找到具有相同tDate,产品,价格和数量且不等于BuySell的货币对。
以下是期望的结果:
**ID tDate Product Price Quantity BuySell Status**
1 10-May-17 pppp $12 20 Buy Null
2 12-May-17 tttt $10 20 Sell Matched
3 12-May-17 tttt $10 20 Buy Matched
4 18-May-17 pppp $14 20 Sell Matched
5 18-May-17 pppp $14 20 Buy Matched
6 18-May-17 pppp $14 20 Sell Null
注意#6如何不匹配,因为它只能匹配另一个null。
我希望我能用一个SQL语句执行此操作。
我现在正在做的可能是最糟糕的做法: 我在python中加载到一个pandas数据帧中,然后我循环遍历比较它们的每一行。
s = "SELECT ID, Account, product, Price, tDate, BuySell, Qty" + \
"FROM Table " + \
"WHERE Status IS NULL " + \
"ORDER BY Account, product, tDate, Price, Qty"
df = pd.read_sql(s, conn)
for i in range(len(df.index)-1):
if df.iloc[i, 1] == df.iloc[i+1, 1] \
and df.iloc[i, 2] == df.iloc[i+1, 2] \
and df.iloc[i, 3] == df.iloc[i+1, 3] \
and df.iloc[i, 4] == df.iloc[i+1, 4] \
and df.iloc[i, 5] != df.iloc[i+1, 5] \
and df.iloc[i, 6] == df.iloc[i+1, 6]:
s = "UPDATE Temp_Fees " + \
"SET Strategy = 'UNALLOCATED \ CANCELLED' " + \
"WHERE ID = " + str(df.iloc[i,0]) + \
" OR ID = " + str(df.iloc[i + 1, 0])
#custom function that will execute and commit statement
bb.EXECUTE(s)
#avoid reading a matched row
i = i + 1
谢谢
答案 0 :(得分:2)
未经测试,但仅使用SQL:
MERGE INTO your_table dst
USING (
SELECT ROW_NUMBER() OVER (
PARTITION BY tDate, Product, Price, Quantity, BuySell
ORDER BY ID
) AS idx,
COUNT( CASE BuySell WHEN 'Buy' THEN 1 END ) OVER (
PARTITION BY tDate, Product, Price, Quantity
) AS num_buy,
COUNT( CASE BuySell WHEN 'Sell' THEN 1 END ) OVER (
PARTITION BY tDate, Product, Price, Quantity
) AS num_sell
FROM your_table
) src
ON ( src.ROWID = dst.ROWID AND src.idx <= LEAST( src.num_buy, src.num_sell ) )
WHEN MATCHED THEN
UPDATE SET Status = 'Matched';
答案 1 :(得分:1)
您可以获得每个tdate的买卖对数,并更新这些行。
MERGE INTO tablename dst
USING (select t.*,count(*) over(partition by tDate,Product,Price,Quantity,rn) as cnt
from (select t.*,row_number() over(partition by tDate,Product,Price,Quantity,buysell order by id) as rn
from tablename t) t
) src
ON (src.id = dst.id AND src.cnt=2)
WHEN MATCHED THEN
UPDATE SET Status = 'Matched';
运行此查询以查看如何将行号分配给买卖。
select t.*,count(*) over(partition by tDate,Product,Price,Quantity,rn) as cnt
from (select t.*,row_number() over(partition by tDate,Product,Price,Quantity,buysell order by id) as rn
from tablename t) t
答案 2 :(得分:1)
这是另一个添加到其他人的视角。这仅解决匹配部分而不解决更新或合并部分。我最近遇到了类似的问题,我需要查找与交易日期和地点相匹配的记录,但来自两个不同的来源。在这种情况下,必须对记录进行排序,以便类似的记录在一起。内部查询将记录与之前的记录和之后的记录进行比较,如果匹配则将其记录下来。然后外部查询确定它们是否符合“差异”标准。希望这会有所帮助。
select sbs.trnsid, sbs.amount, sbs.transaction_date, sbs.posted_date, sbs.srcid,
sbs.credited_flag, sbs.accid, sbs.compid, sbs.badgeid, sbs.locid, sbs.date_credited,
sbs.searchable, sbs.priortime, sbs.nexttime, sbs.priorsource, sbs.nextsource
from
(select trnsid, amount, transaction_date, posted_date, srcid, credited_flag,
accid, compid, badgeid, locid, date_credited, transaction_date||locid as searchable,
lag(transaction_date||locid, 1) over (order by accid) as priortime,
lead(transaction_date||locid, 1) over (order by accid) as nexttime,
lag(srcid, 1) over (order by accid) as priorsource,
lead(srcid, 1) over (order by accid) as nextsource
from transactions_table
where accid = v_acct
and transaction_date >= to_date('10/01/2016 00:00:00', 'mm/dd/yyyy hh24:mi:ss')
and transaction_date <= to_date('04/23/2017 23:59:59', 'mm/dd/yyyy hh24:mi:ss')
and srcid in ('B', 'S') order by accid, transaction_date, locid) sbs
where (sbs.searchable = sbs.nexttime and sbs.srcid = 'S' and sbs.nextsource = 'B')
or (sbs.searchable = sbs.priortime and sbs.srcid = 'B' and sbs.priorsource = 'S');
答案 3 :(得分:1)
merge into mytable t3
using (select t1.*, count(*) over (partition by tdate,product,price,quantity,field) as field2 from
(
select mytable.*, row_number() over (partition by mytable.tdate,mytable.product,mytable.price,mytable.quantity,mytable.buysell
order by id) field from
mytable) t1) t2
on (t2.id=t3.id and t2.field2='2')
when matched then
update set status='Matched';