生产者和消费者的当前配置:
ExecutorService consumerExecutor = createExecutor(...);
ExecutorService producerExecutor = createExecutor(...);
try {
List<Callable<Integer>> callablesForConsumer = createListOfCallablesForConsumer(...);
List<Callable<Integer>> callablesForProducer = createListOfCallablesForProducer(...);
....
....
// submitting tasks to executors and combine them into one list of futures
....
....
for (Future<Integer> future : futures) {
intCount += future.get();
}
....
....
// some business logic
....
....
} finally {
consumerExecutor.shutdown();
producerExecutor.shutdown();
}
如何衡量和记录消费者和生产者单独花费的总时间?
因此我需要得到这样的结果:producerTotalTime=... ms, consumerTotalTime=... ms
我是否应该覆盖一些执行者服务方法,对此有什么想法?
答案 0 :(得分:2)
您可以覆盖ThreadPoolExecutor
的两种方法:
beforeExecute(Thread t, Runnable r)
和afterExecute(Runnable r, Throwable t)
都采用runnable,因此请使用runnable计算其执行时间(在例如。ConcurrentHashMap<Runable, Long>
中映射runnable)
然后在beforeExecute
中,将Runnable
和System.currentTimeMillis()
放入地图。
afterExecute
中,按startTime
从地图中取出Runnable
,并从地图中删除此Runnable
。然后使用startTime
计算long taskExecutionTime = System.currentTimeMillis() - startTime
然后使用AtomicLong
汇总每个runnable中的所有taskExecutionTime
。
使用ConcurrentHashMap
您只需要添加新的Runnables,因为添加相同的Runnable两次或更多次将覆盖前一个。如果您想多次添加相同的runnable,请使用一些MultiMap
实现(例如来自commons-collection或guava)。这个MultiMap需要是Concurrent implementation(线程安全)。
另一种选择是使用一些ThreadLocal变量而不是ConcurrentHashMap,因为每个Runnable都在自己的(执行的那一刻)执行Thread。在执行之前将startTime添加到threadLocal,在afterExecute中获取并计算taskExecutionTime。
第二种情况下的实施可能如下:
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
public class TimedExecutor extends ThreadPoolExecutor {
private ThreadLocal<Long> startTime = new ThreadLocal<>();
private AtomicLong totalExecutionTime = new AtomicLong(0);
public TimedExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit,
BlockingQueue<Runnable> workQueue) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);
}
@Override
protected void beforeExecute(Thread t, Runnable r) {
super.beforeExecute(t, r);
startTime.set(System.currentTimeMillis());
}
@Override
protected void afterExecute(Runnable r, Throwable t) {
super.afterExecute(r, t);
long taskExecutionTime = System.currentTimeMillis() - startTime.get();
totalExecutionTime.addAndGet(taskExecutionTime);
}
public long totalExecutionTime() {
return totalExecutionTime.get();
}
public static TimedExecutor newFixedThreadPool(int noOfThreads) {
int corePoolSize = noOfThreads;
int maximumPoolSize = noOfThreads;
return new TimedExecutor(corePoolSize, maximumPoolSize, 0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
}
如果您想测量特定ExecutorService运行和完成某些特定任务所需的时间,那么这可能会给您一个提示:
import java.util.LinkedList;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
public class MeasureExecutorTime {
public static void main(String[] args) throws InterruptedException {
ExecutorService executorService = Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors()); // any executor - your choice
LinkedList<Runnable> runnables = new LinkedList<>(); // place your Runnables here, to minimize influence of initialization.
long startTime = System.currentTimeMillis();
for (Runnable command : runnables) {
executorService.execute(command);
}
executorService.shutdownNow();
// next line will block till all tasks finishes
executorService.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
long totalExecutionTime = System.currentTimeMillis() - startTime;
}
}