pyspark.sql.utils.IllegalArgumentException:'要求失败:初始容量无效'

时间:2017-04-27 00:00:34

标签: python apache-spark machine-learning pyspark

我正在尝试使用ML库在Spark中使用决策树运行交叉验证,但是在调用cv.fit(train_dataset)时出现此错误:

pyspark.sql.utils.IllegalArgumentException: u'requirement failed: Invalid initial capacity'

除了数据框是空的之外,我还没有找到关于它可能是什么的更多信息,但事实并非如此。 这是我的代码:

df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data')
df.columns = ['Sex', 'Length', 'Diameter', 'Height', 'Whole weight', 'Schuked weight', 'Viscera weight', 'Shell weight', 'Rings']
train_dataset = sqlContext.createDataFrame(df)

column_types = train_dataset.dtypes

categoricalCols = []
numericCols = []

for ct in column_types:
    if ct[1] == 'string':
        categoricalCols += [ct[0]]
    else:
        numericCols += [ct[0]]

stages = []
for categoricalCol in categoricalCols:
    stringIndexer = StringIndexer(inputCol=categoricalCol, outputCol=categoricalCol+"Index")
    stages += [stringIndexer]

assemblerInputs = map(lambda c: c + "Index", categoricalCols) + numericCols
assembler = VectorAssembler(inputCols=assemblerInputs, outputCol="features")
stages += [assembler]

labelIndexer = StringIndexer(inputCol='Rings', outputCol='indexedLabel')
stages += [labelIndexer]

dt = DecisionTreeClassifier(labelCol="indexedLabel", featuresCol="features")

evaluator = MulticlassClassificationEvaluator(labelCol='indexedLabel', predictionCol='prediction', metricName='f1')

paramGrid = (ParamGridBuilder()
             .addGrid(dt.maxDepth, [1,2,6])
             .addGrid(dt.maxBins, [20,40])
             .build())

stages += [dt]
pipeline = Pipeline(stages=stages)

cv = CrossValidator(estimator=pipeline, estimatorParamMaps=paramGrid, evaluator=evaluator, numFolds=1)

cvModel = cv.fit(train_dataset)
train_dataset = cvModel.transform(train_dataset)

我在本地运行Spark standalone。可能有什么不对?

谢谢!

1 个答案:

答案 0 :(得分:1)

所以,问题是将numFolds的{​​{1}}参数设置为1.如果我想用CrossValidation进行参数调整,只有一个列车测试分割,显然我需要使用ParamGrid代替。