你知道如何将矩阵变换为R中所谓的双重居中矩阵吗?这样变换矩阵的和(col)和sum(行)都是零向量。感谢。
答案 0 :(得分:4)
使用以下算法对矩阵M进行双重定心:
1)生成两个与原始矩阵大小相同的矩阵,其中包含行方式和逐列方式。让我们称这两个矩阵为R和C:
if ((start != null && end != null))
{
if (IncludeClosedQuotes == true && quotes1.QuoteStatus != null)
{
if((ExcludeNoBid == false) && ((String.IsNullOrEmpty(ProductCode)) || (quotes1.ProductCode != ProductCode)))
{
myList.Add(quotes1);
}
if ((ExcludeNoBid == false) && (quotes1.ProductCode == ProductCode) && (quotes1.SalesCode.ToString() == SalesPerson))
{
myList.Add(quotes1);
}
if ((ExcludeNoBid == true && quotes1.NoBid == false) && (quotes1.ProductCode == ProductCode))
{
myList.Add(quotes1);
}
if((ExcludeNoBid == true && quotes1.NoBid == false) && (quotes1.ProductCode != ProductCode) && (quotes1.SalesCode.ToString() != SalesPerson))
{
myList.Add(quotes1);
}
}
if ((IncludeClosedQuotes == false) && (ExcludeNoBid == false))
{
if (quotes1.ProductCode == ProductCode)
{
myList.Add(quotes1);
}
if ((quotes1.ProductCode == ProductCode) && (quotes1.SalesCode.ToString() == SalesPerson))
{
myList.Add(quotes1);
}
}
if ((IncludeClosedQuotes == false) && (ExcludeNoBid == true && quotes1.NoBid == false))
{
if ((quotes1.ProductCode == ProductCode) && (quotes1.SalesCode.ToString() != SalesPerson))
{
myList.Add(quotes1);
}
if((String.IsNullOrEmpty(ProductCode) && quotes1.SalesCode.ToString() == SalesPerson))
{
myList.Add(quotes1);
}
}
}
和
| mean(M[1,1:3]) mean(M[1,1:3]) mean(M[1,1:3]) |
R = | mean(M[2,1:3]) mean(M[2,1:3]) mean(M[2,1:3]) |
| mean(M[3,1:3]) mean(M[3,1:3]) mean(M[3,1:3]) |
2)将它们减去M并加上平均值: | mean(M[1:3,1]) mean(M[1:3,2]) mean(M[1:3,3]) |
C = | mean(M[1:3,1]) mean(M[1:3,2]) mean(M[1:3,3]) |
| mean(M[1:3,1]) mean(M[1:3,2]) mean(M[1:3,3]) |
。
以下是执行此操作的代码:
M - C - R + grand_mean(M)
您可以通过计算# example data
M = matrix(runif(9),nrow=3,ncol=3)
# compute the row-wise and column-wise mean matrices
R = M*0 + rowMeans(M) # or `do.call(cbind, rep(list(rowMeans(tst)),3))`
C = t(M*0 + colMeans(M)) # or `do.call(rbind, rep(list(colMeans(tst)),3))`
# substract them and add the grand mean
M_double_centered = M - R - C + mean(M[])
和rowMeans(M_double_centered)
来检查这是否给出了正确的答案。