我遵循循环遍历数组列表(mainItems)的代码,找到最相似的两个数组并将它们放在sortedTransactions中。它适用于小数据(10000个事务),但它永远运行88000个事务。可以采取哪些措施使其适用于大数据。
import java.util.*;
public class Sort {
static private List<Transactions> trans = ReadFile.transactions;
static public List<int[]> mainItems;
static public ArrayList<int[]> sortedTransactions = new ArrayList<int[]>();
static {
mainItems = new ArrayList<int[]>();
for (Transactions t : trans) {
mainItems.add(t.getItems());
}
}
static private double jaccardSimilarity(int[] a, int[] b) {
Set<Integer> s1 = new LinkedHashSet<Integer>();
for(int i =0; i< a.length; i++){
s1.add(a[i]);
}
Set<Integer> s2 = new LinkedHashSet<Integer>();
for(int i =0; i< b.length; i++){
s2.add(b[i]);
}
Set<Integer> intersection = new LinkedHashSet<>(s1);
intersection.retainAll(s2);
Set<Integer> union = new LinkedHashSet<Integer>(s1);
union.addAll(s2);
double jaccardSimilarity = (double)intersection.size()/ (double)union.size();
//System.out.println(intersection);
return jaccardSimilarity;
}
static private boolean isAllEqual(List<Double> a){
for(int i=1; i<a.size(); i++){
if(a.get(0) != a.get(i)){
return false;
}
}
return true;
}
static public void generatePairs() {
for (int i = 0; i < mainItems.size() - 1; i++) {
if (!sortedTransactions.contains(mainItems.get(i))) {
List<Double> myd = new ArrayList<Double>();
List<int[]> mys = new ArrayList<int[]>();
for (int j = i + 1; j < mainItems.size(); j++) {
if (!sortedTransactions.contains(mainItems.get(j))) {
myd.add(jaccardSimilarity(mainItems.get(i),mainItems.get(j)));
mys.add(mainItems.get(j));
}
}
if (isAllEqual(myd) == false) {
sortedTransactions.add(mainItems.get(i));
sortedTransactions.add(mys.get(maxValue(myd)));
}
}
}
}
static private int maxValue(List<Double> d) {
double max = d.get(0);
int f = 0;
for(int i =1; i< d.size(); i++){
if(d.get(i) > max){
max= d.get(i);
f= i;
}
}
return f;
}
}
答案 0 :(得分:1)
您不必创建联合集(union(s1,s2).size()是s1.size()+ s2.size() - intersection(s1,s2).size())。< / p>
static private double jaccardSimilarity(int[] a, int[] b) {
Set<Integer> s1 = new HashSet<Integer>();
for (int i = 0; i < a.length; i++) {
s1.add(a[i]);
}
Set<Integer> s2 = new HashSet<Integer>();
for (int i = 0; i < b.length; i++) {
s2.add(b[i]);
}
final int sa = s1.size();
final int sb = s2.size();
s1.retainAll(s2);
final int intersection = s1.size();
return 1d / (sa + sb - intersection) * intersection;
}