我正在研究N-Queens问题并检查女王是否已经被放置在左上角和左下角上,我发现难以制定循环条件。
func isPlaceable(row: Int, column: Int) -> Bool {
// check if one same row another queen exits
for i in 0..<column {
if (solution[row][i] == 1) {
return false
}
}
// check upper left diagonal
// in C or C++ I can do
// for (int i = row, int j = col; i >= 0 && j >= 0; i--, j--) {
// if (board[i][j])
// return false;
//}
}
Swifty的做法是什么,即梳理这两个条件?
答案 0 :(得分:1)
一种可能的解决方案是您可以使用zip(_:_:)
两个序列。
func isPlaceable(row: Int, column: Int) -> Bool {
// check if one same row another queen exits
for i in 0..<column {
if (solution[row][i] == 1) {
return false
}
}
// check upper left diagonal
let seq1 = (0...row).reversed()
let seq2 = (0...column).reversed()
for (i,j) in zip(seq1, seq2) {
if (board[i][j]) {
return false
}
}
//your code
}
答案 1 :(得分:0)
var i = row
var j = col
while (i >= 0 && j >= 0) {
if (board[i][j])
return false;
i -= 1
j -= 1
}
答案 2 :(得分:0)
这种类型的过程从双重间接和准备好的矩阵中获益良多。
例如,您可以为电路板上的每个线段指定一个标识符,并检查没有两个皇后使用相同的线段。
标准棋盘上有46个线段:
8垂直 8横 30对角线(每个15个)
(我将它们编号为1到46)
当皇后正确放置时,它们将分别使用其他女王使用的4个线段(轴)。集合是检查此非交叉联合的理想结构。通过在每行/每列准备一组4轴标识符的矩阵,8个皇后的集合的简单联合将告诉我们它们是否彼此对齐。
// vertical axes (1...8)
let vAxis = [ [ 1, 2, 3, 4, 5, 6, 7, 8 ],
[ 1, 2, 3, 4, 5, 6, 7, 8 ],
[ 1, 2, 3, 4, 5, 6, 7, 8 ],
[ 1, 2, 3, 4, 5, 6, 7, 8 ],
[ 1, 2, 3, 4, 5, 6, 7, 8 ],
[ 1, 2, 3, 4, 5, 6, 7, 8 ],
[ 1, 2, 3, 4, 5, 6, 7, 8 ],
[ 1, 2, 3, 4, 5, 6, 7, 8 ]
]
// horizontal axes (9...16)
let hAxis = [ [ 9, 9, 9, 9, 9, 9, 9, 9 ],
[ 10, 10, 10, 10, 10, 10, 10, 10 ],
[ 11, 11, 11, 11, 11, 11, 11, 11 ],
[ 12, 12, 12, 12, 12, 12, 12, 12 ],
[ 13, 13, 13, 13, 13, 13, 13, 13 ],
[ 14, 14, 14, 14, 14, 14, 14, 14 ],
[ 15, 15, 15, 15, 15, 15, 15, 15 ],
[ 16, 16, 16, 16, 16, 16, 16, 16 ],
]
// up right axes (17...31)
let uAxis = [ [ 17, 18, 19, 20, 21, 22, 23, 24 ],
[ 18, 19, 20, 21, 22, 23, 24, 25 ],
[ 19, 20, 21, 22, 23, 24, 25, 26 ],
[ 20, 21, 22, 23, 24, 25, 26, 27 ],
[ 21, 22, 23, 24, 25, 26, 27, 28 ],
[ 22, 23, 24, 25, 26, 27, 28, 29 ],
[ 23, 24, 25, 26, 27, 28, 29, 30 ],
[ 24, 25, 26, 27, 28, 29, 30, 31 ],
]
// down right axes (32...46)
let dAxis = [ [ 39, 40, 41, 42, 43, 44, 45, 46 ],
[ 38, 39, 40, 41, 42, 43, 44, 45 ],
[ 37, 38, 39, 40, 41, 42, 43, 44 ],
[ 36, 37, 38, 39, 40, 41, 42, 43 ],
[ 35, 36, 37, 38, 39, 40, 41, 42 ],
[ 34, 35, 36, 37, 38, 39, 40, 41 ],
[ 33, 34, 35, 36, 37, 38, 39, 40 ],
[ 32, 33, 34, 35, 36, 37, 38, 39 ],
]
// Set of axis numbers for each [row][col] of the board
let axes = (0..<8).map()
{
row in (0..<8).map()
{ Set([ vAxis[row][$0], hAxis[row][$0], uAxis[row][$0], dAxis[row][$0] ]) }
}
// position of each queen ( column number at each row )
var queenCols = [5, 3, 6, 0, 7, 1, 4, 2]
// Check if each queen in queenCols is on its own 4 axes
// We will have 32 (8 x 4) different axes used if no queen aligns with another
let fullCover = queenCols.enumerated()
.reduce(Set<Int>()){ $0.union(axes[$1.0][$1.1]) }
.count == 32
此“fullCover”检查可用于所有16,777,216组合的暴力循环,或者可以对其进行细化以在优化的搜索树中执行增量检查。 (顺便说一下,蛮力解决方案只需80秒即可在MacBook Pro上进行计算)
所以,最后,你可以完全避免循环。
[EDIT]功能在强力循环中找到92个解决方案:
public func queenPositions() -> [[Int]]
{
var result : [[Int]] = []
let rows : [Int] = Array(0..<8)
for i in 0..<16777216
{
var N:Int = i
let queenCols = rows.map{ _ -> Int in let col = N % 8; N = N / 8; return col}
let fullCover = queenCols.enumerated()
.reduce(Set<Int>()){ $0.union(axes[$1.0][$1.1]) }
.count == 32
if fullCover { result.append(queenCols) }
}
return result
}
[EDIT2]在优化的树搜索中使用集合矩阵在0.03秒内生成92个解。
这是优化(和通用)功能:
public func queenPositions2(boardSize:Int = 8) -> [[Int]]
{
let vAxis = (0..<boardSize).map{ _ in (0..<boardSize).map{$0} }
let hAxis = (0..<boardSize).map{ Array(repeating:$0+boardSize, count:boardSize) }
let uAxis = (0..<boardSize).map{ row in (0..<boardSize).map{ 2 * boardSize + row + $0} }
let dAxis = (0..<boardSize).map{ row in (0..<boardSize).map{ 5 * boardSize - row + $0} }
let axes = (0..<boardSize).map()
{
row in (0..<boardSize).map()
{ Set([ vAxis[row][$0], hAxis[row][$0], uAxis[row][$0], dAxis[row][$0] ]) }
}
var result : [[Int]] = []
var queenCols : [Int] = Array(repeating:0, count:boardSize)
var colAxes = Array(repeating:Set<Int>(), count:boardSize)
var queenAxes = Set<Int>()
var row = 0
while row >= 0
{
if queenCols[row] < boardSize
{
let newAxes = axes[row][queenCols[row]]
if newAxes.isDisjoint(with: queenAxes)
{
if row == boardSize - 1
{
result.append(queenCols)
queenCols[row] = boardSize
continue
}
else
{
colAxes[row] = newAxes
queenAxes.formUnion(newAxes)
row += 1
queenCols[row] = 0
continue
}
}
}
else
{
row -= 1
if row < 0 { break }
}
queenAxes.subtract(colAxes[row])
colAxes[row] = Set<Int>()
queenCols[row] += 1
}
return result
}
考虑到10x10电路板,724解决方案的生成时间为0.11秒。
[EDIT3]一个班轮“for loop”......
您可以为给定位置的4个轴生成(行,列)坐标数组,并将其用作for循环中的数据:
func isPlaceable(row: Int, column: Int) -> Bool
{
var coverage = (0..<8).map{($0,column)} // horizontal
coverage += (0..<8).map{(row,$0)} // vertical
coverage += zip((max(0,row-column)..<8),(max(0,column-row)..<8)) // diagonal down
coverage += zip((0...min(7,row+column)).reversed(),(max(0,column+row-7)..<8)) // diagonal up
// return !coverage.contains{solution[$0][$1] == 1}
for (r,c) in coverage
{
if solution[r][c] == 1 { return false }
}
return true
}
每次重建整个覆盖列表都是浪费。我会为每个坐标计算一次,并将其放在行/列矩阵中,以便在isPlaceable()函数中重用。