SQLContext.sql上的Spark NoSuchMethodError(Cloudera 5.8.0上的Spark 1.6.0)

时间:2017-04-25 16:33:50

标签: java apache-spark cloudera

我正在尝试从java程序中使用Spark SQL,其中pom.xml中的依赖项指向Spark版本1.6.0。以下是程序

package spark_test;

import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.hive.HiveContext;

public class MyTest {
private static SparkConf sparkConf;

public static void main(String[] args) {        
    String warehouseLocation = args[0];
    sparkConf = new SparkConf().setAppName("Hive Test").setMaster("local[*]")
            .set("spark.sql.warehouse.dir", warehouseLocation);

    JavaSparkContext ctx = new JavaSparkContext(sparkConf);
    SQLContext sc = new HiveContext(ctx.sc());

    System.out.println(" Current Tables: ");

    DataFrame results = sc.sql("show tables");
    results.show();
}
}

然而,我在线程" main"中获得了Exception。 java.lang.NoSuchMethodError:org.apache.spark.sql.SQLContext.sql(Ljava / lang / String;)Lorg / apache / spark / sql / DataFrame;我正在创建一个平坦的jar并从命令行运行jar

Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/home/cloudera/workspace/slf4j-log4j12-1.7.16.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/cloudera/workspace/PortalHandlerTest.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/cloudera/workspace/SparkTest.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [file:/home/cloudera/workspace/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/cloudera/workspace/JARs/slf4j-log4j12-1.7.22.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/lib/zookeeper/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
17/04/25 08:44:07 INFO SparkContext: Running Spark version 2.1.0
17/04/25 08:44:07 WARN SparkContext: Support for Java 7 is deprecated as of Spark 2.0.0
17/04/25 08:44:07 WARN SparkContext: Support for Scala 2.10 is deprecated as of Spark 2.1.0
17/04/25 08:44:08 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/04/25 08:44:08 INFO SecurityManager: Changing view acls to: cloudera
17/04/25 08:44:08 INFO SecurityManager: Changing modify acls to: cloudera
17/04/25 08:44:08 INFO SecurityManager: Changing view acls groups to: 
17/04/25 08:44:08 INFO SecurityManager: Changing modify acls groups to: 
17/04/25 08:44:08 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users  with view permissions: Set(cloudera); groups with view permissions: Set(); users  with modify permissions: Set(cloudera); groups with modify permissions: Set()
17/04/25 08:44:09 INFO Utils: Successfully started service 'sparkDriver' on port 43850.
17/04/25 08:44:09 INFO SparkEnv: Registering MapOutputTracker
17/04/25 08:44:09 INFO SparkEnv: Registering BlockManagerMaster
17/04/25 08:44:09 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
17/04/25 08:44:09 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
17/04/25 08:44:09 INFO DiskBlockManager: Created local directory at /tmp/blockmgr-4199c353-4e21-4863-8b78-cfa280ce2de3
17/04/25 08:44:09 INFO MemoryStore: MemoryStore started with capacity 375.7 MB
17/04/25 08:44:09 INFO SparkEnv: Registering OutputCommitCoordinator
17/04/25 08:44:09 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041.
17/04/25 08:44:09 INFO Utils: Successfully started service 'SparkUI' on port 4041.
17/04/25 08:44:09 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://10.0.2.15:4041
17/04/25 08:44:10 INFO Executor: Starting executor ID driver on host localhost
17/04/25 08:44:10 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 41716.
17/04/25 08:44:10 INFO NettyBlockTransferService: Server created on 10.0.2.15:41716
17/04/25 08:44:10 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
17/04/25 08:44:10 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, 10.0.2.15, 41716, None)
17/04/25 08:44:10 INFO BlockManagerMasterEndpoint: Registering block manager 10.0.2.15:41716 with 375.7 MB RAM, BlockManagerId(driver, 10.0.2.15, 41716, None)
17/04/25 08:44:10 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 10.0.2.15, 41716, None)
17/04/25 08:44:10 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, 10.0.2.15, 41716, None)
Current Tables: 
Exception in thread "main" java.lang.NoSuchMethodError: org.apache.spark.sql.SQLContext.sql(Ljava/lang/String;)Lorg/apache/spark/sql/DataFrame;
at spark_test.MyTest.main(MyTest.java:31)
17/04/25 08:44:10 INFO SparkContext: Invoking stop() from shutdown hook
17/04/25 08:44:10 INFO SparkUI: Stopped Spark web UI at http://10.0.2.15:4041
17/04/25 08:44:10 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
17/04/25 08:44:10 INFO MemoryStore: MemoryStore cleared
17/04/25 08:44:10 INFO BlockManager: BlockManager stopped
17/04/25 08:44:10 INFO BlockManagerMaster: BlockManagerMaster stopped
17/04/25 08:44:10 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
17/04/25 08:44:10 INFO SparkContext: Successfully stopped SparkContext
17/04/25 08:44:10 INFO ShutdownHookManager: Shutdown hook called
17/04/25 08:44:10 INFO ShutdownHookManager: Deleting directory /tmp/spark-93fca3d1-ff79-4d2b-b07f-a340c1a60416

可能是因为我的pom有火花版1.6.0,但是cloudera VM正在运行2.1.0。 spark-shell运行火花版1.6.0并且工作正常。如何在我的java程序中强制版本为1.6.0?

任何帮助都将不胜感激。

2 个答案:

答案 0 :(得分:2)

DataFrame()在数据集()中被Spark 2取代。您需要导入org.apache.spark.sql.Dataset并使用它,如果您正在使用Spark 2.1服务器端运行Spark 1.6客户端。更多信息here。从开发人员体验的角度来看,大多数API都是类似的。老实说,如果不是服务器版本,你在客户端至少使用Spark 2.0依赖项要好得多。

答案 1 :(得分:0)

您的日志显示您正在运行针对1.6.0 Spark Cluster的Spark 2.1库。我的猜测是你的客户端和服务器库不是二进制兼容的。我建议您在应用程序中使用与服务器中存在的版本相同的版本以确保兼容性。